
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Eliminative Argumentation for Arguing System
Safety - A Practitioner's Experience

Simon Diemert
Critical Systems Labs Inc.

Vancouver, Canada
simon.diemert@cslabs.com

Jeff Joyce
Critical Systems Labs Inc.

Vancouver, Canada
jeff.joyce@cslabs.com

Abstract — Safety cases are an essential artifact for
establishing the safety of complex systems. Industrial use of safety
cases varies between industries. Due to inconsistent regulatory
guidance, numerous different strategies, notations, and techniques
have been developed for safety case construction. Eliminative
Argumentation (EA) has been proposed as a technique to
systematically improve confidence in a safety case via ‘defeasible
reasoning’ wherein reasons to doubt safety claims are introduced
and subsequently eliminated. Elimination of doubt results in
increased confidence. This paper reports on the application of EA
to seven different software-intensive systems in the automotive,
rail, and industrial control industries. Our experiences suggest
that EA’s doubt-driven approach to safety argumentation
increases confidence in a safety case and can be used to support
activities such as independent safety assessments and safety
verification and validation. From our experiences we synthesized
into a set of lessons learned.

Keywords—complex systems, safety assurance, safety cases,
eliminative argumentation

I. INTRODUCTION

Establishing the safety of complex systems is a significant
challenge. Such systems are comprised of many elements, each
with their own non-trivial behaviour. Since safety (defined for
the purpose of this paper as “absence of unreasonable risk” [1])
is a system property, ensuring safe system behaviour requires
understanding how each element contributes to the functionality
of the system as a whole. In many projects, many individuals are
involved with creation of a system. As a result, the rationale for
the safety of a system is often distributed among subject matter
experts. The problems associated with understanding system
safety are heightened in software-intensive systems that contain
complex functionality and rely on non-trivial mechanisms to
achieve safe operation.

Safety cases are an accepted means of capturing the rationale
for a system’s safety. A safety case is “a clear, comprehensive
and defensible argument, supported by evidence, that an item is
free from unreasonable risk when operated in an intended
context” [1]. Some safety standards such as ISO 26262 and EN
51026 require the creation of a safety case; however, they offer
varying levels of guidance on the content of this critical artifact.
ISO 26262 emphasizes the importance of sound relationship
between the argument and supporting evidence: “an argument
without supporting evidence is unfounded, and therefore
unconvincing. Evidence without an argument is unexplained,
resulting in a lack of clarity as to how the safety objectives have
been satisfied” [1]. We emphasize the second point: a safety case

must be more than a “box of test results”. In our experience, lack
of structure contributes to conceptual gaps in verification and
validation activities. However, ISO 26262 does not provide
additional guidance and the precise content of the safety case is
left open to interpretation.

EN 51026 prescribes the content of a safety case as a
collection of reports and analyses of various failure/fault
conditions, i.e., it is heavily focused on evidence without an
argument [2]. Other standards, such as IEC 61508 for industrial
control and DO-178C for airborne software do not require the
explicit creation of a safety case [3, 4]. These standards
collectively rely an “implicit safety case” because they do not
directly argue the safety of a product itself but instead depend
on the implication that a rigorous process results in a safe
product [5].

In the absence of authoritative and uniform regulatory
guidance for creating safety cases, different conventions and
techniques have been developed by academia and industry. Goal
Structured Notation (GSN) was created by Tim Kelly and is the
most widely recognized notation for describing safety
arguments [6]; standards prescribing the syntax and semantics
of GSN have been created in an effort to achieve uniformity
across industries [7]. Other techniques for describing safety
cases include “Claims-Argument-Evidence” (CAE) notation
[8], and structured textual narrative. We have worked with some
of these techniques in the past and have found them satisfactory.

Eliminative Argumentation has been proposed as an
additional technique for the creation of safety cases [9]. The goal
of EA is to systematically increase confidence in a safety case
via the use of a defeasible reasoning. We have found that
defeasible reasoning has changed the way we approach safety
argumentation and results in a better understanding of the
system under investigation. The main contribution of this paper
is a set of “lessons learned” from the application of EA to several
real-world safety-critical systems. The remainder of this paper
is structured as follows. Section II provides a short introduction
to EA. Section III summarizes our experience applying EA to
real-world systems. Section IV provides the set of “lessons
learned”. Section V makes concluding remarks.

II. OVERVIEW OF ELMINATIVE ARGUMENTAITON

Eliminative Argumentation (EA) was introduced by
Goodenough et al. as an adaption of Toulmin’s notation [9, 10,
11]. EA provides an abstract framework for constructing an
argument and assessing confidence in the argument based on the
notion of defeasible reasoning where in claims are recursively

challenged. As reasons to doubt a claim are eliminated
confidence in the claim increases. This section provides
motivation for the use of EA, introduces the key concepts of
technique, and provides a demonstration of EA on a toy
chemical reactor system.

A. The Role of Doubt in Safety Argumentation

Safety argumentation is invariably impacted by confirmation
biases that arise when authors aim to directly “prove” a system
is safe. A notable example of confirmation bias related to safety
argumentation was revealed as part of a review following the
fatal crash of the Nimrod, a UK military aircraft, in Afghanistan
in 2006. In the investigation, it was found that:

 “the Nimrod Safety Case [was] fatally
undermined by an assumption by all the organisations
and individuals involved that the Nimrod was ‘safe
anyway’, because the Nimrod fleet had successfully
flown for 30 years, and they were merely documenting
something which they already knew. … The Nimrod
Safety Case became essentially a paperwork and ‘tick-
box’ exercise” [12].

Typically, a safety case starts with a top-level safety claim
and then recursively decomposes that claim into sub-claims
which are eventually supported by evidence. Conventional
techniques do not (at least as part of the standard notation) leave
room for expression of doubt. As a result, authors of a safety
case are not prompted to question their claims or validity of
evidence. The task of creating a safety case is then reduced to
making the minimum set of claims required to prove the top-
level claim rather than seeking to demonstrate an acceptable
level of residual risk.

However, in practice, engineers have many reasons to doubt
the safety of a system. For example, in software engineering,
there is a strong culture of doubting whether software is in fact
defect free. This is so prevalent that the creation of defect free
software is regarded as axiomatically impossible among
software engineers. One would be hard pressed to find a
software engineer who will claim the software they create is
defect free. Doubting oneself and subsequently eliminating
those doubts with further claims and evidence is central to the
scientific and engineering approach to problem solving. The
methods of safety argumentation should take advantage of this
fact. There should be an explicit means to capture, express, and
analyze doubts that engineers have about the systems they
create. Only after the residual risk associated with the doubts is
understood can a informed conclusion about the safety of the
system be formulated.

Of course, enumeration of doubt is not, on its own, sufficient
to defeat confirmation bias. Enumeration of doubt only shifts the
question from “do the sub-claims completely support the top-
level claim?” to “have all of the sources of doubt been
identified?” However, doubt can also be expressed about the
completeness of the doubts themselves which in turn
necessitates further argument about the completeness. For
example, one might doubt the completeness of a set of failure
modes derived for a component in the system based on a Failure
Modes and Effects Analysis (FMEA). An argument countering
this doubt might claim that a combination of experienced

persons and systematic methodology provide confidence in the
completeness of the failure modes. Regardless, a residual doubt
exists that maybe a failure mode was overlooked. This residual
doubt should be captured and communicated to stakeholders as
a risk associated with the design process used to create the
component.

At this point, it should be noted that our concerns are not
with individual safety cases (or their authors). It is not meant to
imply that all safety cases developed by conventional methods
are deeply flawed. Indeed, there are exceptional safety cases
developed using conventional techniques that convincingly
argue the safety of complex systems. The main concern here is
the ability of engineers to express, analyze, and subsequently
refute their natural doubts when using a conventional
technique/notation and the role of this mode of thought in
addressing confirmation bias.

EA addresses the question confirmation biases by including
the notion of doubt as a first-class citizen. The EA notation calls
these doubts “defeaters” in the sense that they are used to defeat
aspects of an argument. There are three types of defeaters [9]:

 Rebutting Defeaters (RD) express doubt about a claim.
For example, one might claim “the valve will open when
commanded” which could be rebutted by “unless the
valve is stuck closed”.

 Undermining Defeaters (UM) express doubt about
evidence provided in support of some claim. For
example, in a software project, one might provide
evidence of laboratory test results to support the claim
that a requirement as been satisfied. This evidence might
be undermined by a defeater: “unless the laboratory
environment is not the same as the operational
environment”.

 Undercutting Defeaters (UC) express doubt an
inference rule used to combine multiple aspects of an
argument. For example, an argument that adopts the
strategy to argue that all hazards have been adequately
mitigated has an (implicit) inference rule that “if all
failure modes have been adequately mitigated, then no
hazard can occur”. The undercutting defeater doubts the
inference rule by questioning its premise: “unless there
was a failure mode that was not identified”.

To illustrate the above defeaters, consider a fictious chemical
reactor, adapted from the example in [13]. A chemical reaction
is carried out in a reaction vessel. The reaction temperature is
managed by adding water from an external water reservoir. The
flow of water is controlled by a control computer that actuates a
water valve. The temperature of the reaction is measured by a
sensor that provides feedback to the control computer. The
control computer uses a sophisticated control algorithm to
determine how much water to provide to the reactor. Figure 1
contains a sample EA-based safety argument that starts with the
claim that the control system provides enough cooling to prevent
the reactor from overheating (assuming overheating is a
hazardous event). Note that this top-level claim might a sub-
claim of a larger argument.

This example is not intended to be a complete argument,
instead it demonstrates the key elements of the EA technique,
namely: 1) enumeration of doubt, 2) elimination of doubt, 3)
explicit description of inference rules, and 4) acceptance of
residual doubt. We adopt a similar syntax and semantics to those
defined by Goodenough et al. with only minor variation:

 Claims (C) are statements that must be supported further
argumentation to demonstrate their validity.

 Evidence (E) describe observations, data, or artifacts that
support claims.

 Strategies (S) describe the approach used to organize a
collection claims or defeaters. Strategies are “top-down”
in the sense that capture an overall approach to
supporting a claim.

 Inference Rules (IR) describe how to logically combine
a collection of one or more claims/defeaters to support a

parent claim. Inference Rules are “bottom-up” and
complement Strategies. Inference Rules are often
obvious in an argument and do not need to be expressly
stated every time. However, when non-obvious logic is
employed or there is a reason to doubt the validity of an
inference rule, then inference rules are explicitly
included in the argument.

 Context (X) provide additional information, that is not
required to create a sound argument but is helpful for
orienting the reader. Context is not used in Figure 1.

 Assumptions (A) are explicit statements that are
assumed to be true as part of an argument. If an
assumption is not satisfied, then the argument would
become invalid. Assumptions are not used in Figure 1.

 Terminators denote the end of a line of reasoning as
either: complete (OK), a source of residual doubt (Res),
or undeveloped (shown as a diamond).

Figure 1 - Sample argument for a chemical reactor.

B. Assessing Confidence in an Argument

Assessing confidence in a claim or evidence remains a
concern [14]. How can a reviewer be confident that safety case
adequately argues its stated claims? Enumeration and
elimination of doubt might reduce confirmation bias, but to what
extent does it do so? This quickly becomes a problem when

developing a safety case for a complex system that combines
multiple sub-arguments for different system elements and relies
on a combination of qualitative and quantitative evidence.

A doubt-driven EA safety case may supplemented with
numerical data in an attempt to quantify confidence. To this end,
Goodenough et al. propose two methods [9]. In their first

method, probabilities are assigned to doubts in an argument and
combined similarly to combining probabilities in a fault-tree
analysis. This is also similar to other quantitative approaches for
confidence assessment such as Bayesian Belief Networks
(BBNs) [15]. However, a probabilistic approach suffers from
concerns related to the choice of numerical values which are
known to produce inconsistent results due to variability in
judgement on the part of analysts [16]. To address this
limitation, Goodenough et al. suggest using a qualitative scale
and translating the selected categories into numerical values
based on fuzzy logic, but this idea has not been developed [9].

Goodenough et al.’s second method is a semi-quantitative
approach based on the notion of a Baconian confidence [11]. In
this approach, the status of a defeater is either “fully eliminated”
(i.e., no longer a concern) or “residual”. Residual defeaters are
counted and compared to the total number of defeaters in the
argument to obtain a confidence level expressed as “X | Y”
where X is the number of unaddressed defeaters (residual
doubts) and Y is the total number of defeaters. This relatively
simple technique is based on the premise that confidence in an
argument increases as doubts in the argument is eliminated.

III. EXPERIENCES DEVELOPING SAFETY CASES

This section describes our experience developing seven
safety cases using EA. Each safety case is discussed in detail
below. Discussion is limited to general commentary to avoid
disclosure of private and proprietary information. In

Table 1 the number of nodes in the safety case is reported by
EA node type. The total number of nodes is computed as the sum
of all node types except for Residual Doubts (“Res.”). The
Residual Doubts are a subset of the Defeaters (“RD”, “UM”,
“UC”); therefore, the Residual Doubts are excluded from the
sum to avoid double counting.

A. Safety Cases 1, 2, 3 - Embedded Automotive Software

Safety cases 1, 2, and 3 were all created for low-level
embedded software products used in automotive systems. These
safety cases have a broad scope that spans all phases of the
software development lifecycle as defined by ISO 26262. The
safety cases covered the definition of the software requirements,
software architecture, detailed design, implementation, unit
verification, and integration testing on target hardware. The low

level of abstraction coupled with the complexity of software is
responsible for their relatively large size.

Safety case 3 was created for a notably simpler embedded
software product, hence the difference in size from safety cases
1 and 2. However, it is worth noting that the distribution of node
types relative to the total number of nodes remains consistent
between safety cases 1, 2, and 3.

Safety Cases 1, 2, and 3 cases were reviewed by a reputable
independent authority and accepted as part of an ISO 26262
compliance audit for their respective products.

B. Safety Cases 4, 5, and 6 – ADAS Sensor Function

Safety case 4 was created for an automotive Advanced
Driver Assistance System (ADAS) sensor system. The safety
case was created at the functional (“black box”) level of
abstraction and aimed to demonstrate the safety of the intended
functionality of the product, particularly in relation to the
behaviour of the external environment (e.g., weather
conditions). In this project, an iterative EA-based approach was
used refine the functional requirements of the system to better
address concerns related to the external environment.

Safety cases 5 and 6 were for a signal processing function
for use in a rail application. These safety cases were created to
demonstrate the safety of a signal processing algorithm in a
specific operational context. The emphasis of these two safety
cases was on identifying validation activities that would increase
confidence in the algorithm’s behaviour given a wide range of
inputs. The use of an iterative EA-based approach helped
structure and focus the overall safety validation effort.
Additionally, safety case 6 subsumes safety case 5, i.e., the
algorithm related to safety case 5 is used as part of a more
complex algorithm for safety case 6. Safety cases 5 and 6 were
developed in the context of a broader EN 5012x compliance
effort that focused on the product(s) that would incorporate the
signal processing algorithms.

The smaller size of safety cases 4, 5, 6 is attributed to the
higher level of abstraction used to create this safety case. If the
arguments had been further developed to encompass the details
of hardware and/or software development, it is anticipated that
these safety cases would have grown much larger.

Table 1 – Summary of safety cases developed using EA; includes number of each EA node type used for each argument.

 Number of Each EA Node Type Used

Application Type Industry C E RD UM UC IR A X S Res. Total

1 Embedded Software Automotive 184 147 142 - 1 10 10 17 2 19 513

2 Embedded Software Automotive 188 144 117 11 2 2 6 13 1 28 484

3 Embedded Software Automotive 94 81 79 - - - - 3 - 7 257

4 Embedded Software Automotive 63 19 62 - - - 2 - 3 25 149

5 Signal Processing Algorithm Rail 33 21 30 - 3 3 - 1 4 - 95

6 Signal Processing Algorithm Rail 23 4 - - 3 3 - 3 4 - 40

7 Monitor & Interlock System Industrial Control 7 1 5 - - - - 1 - - 14

C. Safety Case 7 – Industrial Interlock System

Safety case 7 is for a predictive safety monitor and
interlock system used in an industrial application and is being
developed as part of an IEC 61508 compliance effort. The
system in question uses software to predict the behaviour of a
physical process and engages an interlock if/when the process
under control violates predetermined thresholds. The safety
case’s scope spans the entire monitor and interlocking system
from top-level functional behaviours through to detailed
hardware and software development. A key challenge
associated with safety case 7 is demonstrating that the
predictive functions of the monitoring system accurately
predict the true behaviour of the process under control; early
use of EA has been helpful in structuring the overall safety
strategy in this regard.

This safety case is still in early development and is
evolving with the development of the system. The number of
nodes reported in

Table 1 represent the top two layers of the EA argument
tree (i.e., root node and direct children) and are related to
hazards and safety goals (system-level safety requirements).
Safety case 7 will undergo independent review as part of the
industrial system’s overall certification effort.

D. Remarks on Argument Size

Based on

Table 1, the safety cases discussed above are of varying
size with the largest having 513 nodes and the smallest
(excluding safety case 7 which is currently under
development) having 40 nodes. We emphasize that the total
number of nodes is not an absolute indicator of completeness
or quality. In our experience, argument size (measured as
number of EA nodes) depends on the system size, system
complexity, and chosen level of abstraction (e.g., functional,
software, hardware, etc.).

IV. LESSONS LEARNED

While developing the EA-based safety cases described
above, we have made many observations about both the EA
technique and safety case development in general. We have
distilled these into the “lessons learned” provided below.

A. Lesson 1: EA is easy to learn

We have had success introducing EA to both technical and
non-technical individuals. The overall pattern of thought
(claim, defeater, claim, defeater, …) is a natural style that
many people are already comfortable using. In one particular
case, we lead an engineering meeting to introduce EA to a new
project; we anticipated hesitant participation from the
engineers in the room. However, in a matter of minutes, the
participants began enthusiastically constructing an argument
for their system with minimal guidance.

We have found that, especially when introducing EA to a
new group, it is easier to use a simplified version of the
notation that permits only claims, evidence, and a single
generalized defeater. This reduces the notational barrier to
adopting EA and helps focus on the primary purpose of the
technique, namely, enumerating and eliminating doubt. More

sophisticated notations can be applied later once the overall
argument structure has established.

While we believe that EA is easy to learn for beginners,
we also know from experience that mastery of the technique
is challenging. Many aspects of EA require a nuanced
perspective that comes with practice. For example, EA’s
Interference Rule (IR) node type allows the user the express a
specific (possibly non-obvious) rule for combining multiple
claims in support of a parent claim. When coupled with an
Undercutting defeater (UC), this becomes a powerful means
of eliminating doubt related to the soundness of the safety
argument. However, overuse of this reasoning pattern
becomes cumbersome and difficult to understand for a
reviewer. Therefore, thoughtful use of this pattern is required.
We have only begun to appreciate the usefulness of the more
subtle aspects of EA.

B. Lesson 2: EA supports independent review

We have found that the doubt-driven approach of EA helps
engineering teams prepare for independent safety
assessment/audit (e.g., an ISO 26262 compliance assessment).
Doubts enumerated during EA-based safety case development
often correspond to questions that a reviewer might pose to the
engineering team. The systematic elimination of these doubts
in the safety case means that there is often a thoughtful answer
prepared in advance for questions from the reviewer.
Moreover, since EA demands evidence be presented as part of
elimination of doubt, the required documents/artifacts are
prepared and organized in advanced. Having this information
consolidated within the safety case results in a smoother
review process and avoids a last minute “scramble” for
answers.

On one occasion, an independent reviewing authority
remarked that the EA-based safety case useful for structuring
their thinking about the safety of the system under review.
This demonstrates the value of a structured approach to safety
case development, which is consistent with the overall value
proposition of structured safety argumentation [6].

C. Lesson 3: The importance of doubt

We have found the explicit permission to express doubt as
defeaters is very helpful in communicating concerns and
limitations of a system. Expression of doubt often leads to
productive conflict amongst team members where one party
expresses a doubt and the other refutes it. In our experience,
such conflict (when appropriately managed) leads to a better
understanding of the system and ultimately a stronger safety
case. Of particular importance are residual doubts resulting
from un-eliminated defeaters. The existence of residual doubt
is not a “bad” outcome of a safety case. As discussed above,
these are the basis for assessing the residual risk associated
with a system. All safety-critical systems have some residual
risk, the use of EA simply highlights this risk. Adopting EA
as part of a safety engineering process necessitates a review of
residual doubts by stakeholders as part of acceptance of the
safety case.

While we view doubt as an essential part of EA, as a
practical matter, it is important to know when to stop. Indeed,
one could doubt themselves ad infinitum. While we cannot

offer specific criteria for when “enough is enough”, we have
found that a combination of a rigorously defined scope (e.g.,
application level software, not supporting software or
hardware) in combination with reasonable engineering
judgement to be effective.

In the end, safety case development is “messy” work. The
literature leaves the impression that safety cases should be
near-perfect tree structures that argue the safety of a system
using a handful of non-specific claims. However, in our
experience, reality rarely conforms to this idealized notion of
a safety case. Complex systems demand complex and nuanced
safety arguments that inevitably produce residual doubt. We
would be suspicious of a safety case that was free of residual
doubt.

D. Lesson 4: Develop early, revise often

For safety-critical systems, safety influences all phases of
the system development lifecycle, from early concept
development through to deployment and maintenance. Such
thinking is adopted by prominent functional safety standards
such as ISO 26262 that intentionally “weave” safety
engineering activities into conventional V lifecycle model for
system development. As a result, the reason(s) a system is safe
are often determined in the early phases of product
development. That is, engineering teams begin creating an
implicit safety case almost immediately. We have found it
instructive to use EA to capture these preliminary safety
arguments and have observed two main benefits of this
practice. First, clearly articulating (in a structured format) the
reason(s) that is a system is safe is productive exercise early
in a project to ensure a team has a common understanding of
the problem at hand. Second, expressing doubts about a design
early in development highlights weakness early and can be
used to focus subsequent design efforts.

However, we have also observed that defining the top-
level claims of an EA-based safety case is the most
conceptually challenging phase of safety case creation. Top-
level claims make very broad assertions about the behaviour
of the system in question and must be articulated carefully so
as to not inadvertently extend the scope of the safety case
beyond what can be demonstrated by evidence.
Comparatively, lower-level argumentation tends to be more
procedural often relying on well-established engineering
processes/principles to support specific claims.

One of the primary principles of EA is “defeasible
reasoning” wherein one repeatedly refines the argument based
on doubt. Our experience supports this principle: safety cases
should be developed early and revised often.

E. Lesson 5: Support system verficiation and validation

As part of a “develop early, revise often” approach (Lesson
5), we have found that EA helps to identify, in advance, the
types of verification and validation activities required to
support safety claims. From a technical perspective, this
provides a top-level view of how many different verification
and validation activities fit together to form a cohesive safety
argument. From project management perspective, this
provides an input to planning verification and validation
activities and identifying risk associated with each activity.

Additionally, doubt-driven thinking helps focus on
meaningful verification and validation activities by permitting
the expression of doubt about the verification and validation
activities themselves. This is in contrast to following a
standard engineering process that might (or might not)
generate convincing evidence in support of safety claims. We
have found this particularly helpful in the context of novel
development where standard processes/techniques are
insufficient and new techniques used to fill gaps. As part of
EA-based safety case development, we often maintain a
“shopping list” of evidence required to support the argument.
This forms an interface between various stakeholders in the
project (management, design team, quality assurance, etc.)
and can be used as an input to verification and validation
planning activities.

F. Lesson 6: More than a fault tree analysis

On first appearance, an EA safety case resembles a Fault
Tree Analysis (FTA). This is one of the first reactions we often
receive when introducing EA to a new project. Indeed, there
are many similarities between EA and FTA. Both EA and
FTA are tree structures, both are deductive (top-down) styles
of reasoning, and both permit the expression of negative
events/concepts (defeaters in the case of EA, faults in the case
of FTA). However, there are key differences between these
two techniques.

First, the top-level node in FTA is usually a “bad event”,
e.g., “the reactor overheats”. Conversely, EA (like all safety
cases) starts with a top-level claim/goal that is positive, e.g.,
“the reactor will not overheat”. This difference shifts the intent
of the supporting sub-tree from finding causes of a “bad
event” to defeasible reasoning on the top-level claim. Second,
FTA focuses on components in a system and describing how
the failure of the components, in conjunction with other
failures, might result in the top-level event occurring. That is,
FTA focuses on a specific type of defeater related to
component failure. EA defeaters consider a wider set of
doubts that indeed covers component failure but also include
non-fault/failure functional behaviours, engineering
processes, soundness of claims, and completeness of
evidence. Due to these differences, we view FTA and
complementary to EA. FTA is a specific analysis technique
for generating evidence about failure scenarios that can be
used to support specific claims in a safety argument regarding
the tolerance of the system to faults and failures.

G. Lesson 7: Confidence assessment remains challenging

One of the value propositions of EA is increased
confidence in safety based on the idea of enumerating and
eliminating doubts about claims. We agree that this, in
combination with consideration of residual doubt,
qualitatively increases confidence. However, we have yet to
see value in the Baconian or probabilistic confidence
measures proposed by Goodenough et al. For both measures,
our criticism is similar to Graydon’s [16, 17]. First, Baconian
confidence is blind to relative importance of residual doubts
and assessment of confidence still requires expert judgement
to resolve/accept the associated residual risk. Second,
measures of probabilistic confidence are strongly influenced
by the choice of numerical values, a task that is challenging

for all but the simplest types of failures (e.g., how does one
accurately quantify the probability of a software defect
occurring?). Regardless, we think that assessing confidence in
an argument is an important pursuit and merits further work.

V. CONSLUSIONS

This paper has motivated and introduced the essential
concepts of Eliminative Argumentation (EA) as a technique
for the development of safety cases. This technique improves
confidence in a safety case by allowing the creators of a safety
case to enumerate and eliminate doubt in a safety claims in a
structured manner. We have recounted our experience
developing seven EA-based safety cases and offered seven
“lessons learned” based on our experience. We view safety
cases as an important part of a mature safety engineering
processes and we have found that EA is a good technique for
the development of such arguments. While we have observed
many benefits of EA, we do not mean to imply that this
technique should be used as a sole means of safety analysis for
a safety-critical system; the opposite is in fact true. EA, like
any safety case, should be used to structure and complement
established engineering practices to improve overall system
development outcomes.

REFERENCES

[1] International Organization for Standardization, "ISO 26262 --
Road Vehicles -- Functional Safety," 2011.

[2] European Committee for Electrotechnical Standardization,
"EN50126 - Railway Applications - The Specification and
Demonstration of Reliability, Availability, Maintainability and
Safety (RAMS)," 2017.

[3] International Electrotechnical Commision, "IEC 61508 -
Functional safety of electrical/electronic/programmable electronic
safety-related systems," International Electrotechnical Commision,
2010.

[4] Radio Technical Commision for Aeronautics, "DO-178C -
Software Considerations in Airborne Systems and Equipment
Certification," 2011.

[5] J. Birch and et al., "Safety Cases and Their Role in ISO 26262
Functional Safety Assessment," in Computer Safety, Reliability,
and Security, Toulouse, 2013.

[6] T. P. Kelly, "Arguing safety - A Systematic Approach to Safety
Case Management," University of York, 1998.

[7] Safety-Critical Systems Club, "SCSC-141B - Goal Structuring
Notation Community Standard - Version 2," 2018.

[8] L. Emmet and G. Cleland, "Graphical notations, narratives and
persuasion: a Pliant Systems approach to Hypertext Tool Design,"
in Proceedings of the 13th ACM conference on Hypertext and
hypermedia, College Park, Maryland, USA, 2002.

[9] J. B. Goodenough, C. B. Weinstock and A. Z. Klein, "Eliminative
Argumentation: A Basis for Arguing Confidence in System
Properties," Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, 2015.

[10] J. B. Goodenough, C. B. Weinstock and A. Z. Klein, "Toward a
Theory of Assurance Case Confidence," Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, USA, 2012.

[11] J. B. Goodenough, C. B. Weinstock and A. Z. Klein, "Eliminative
induction: A basis for arguing system confidence," in Proceedings

of the 2013 International Conference on Software Engineering,
San Francisco, 2013.

[12] C. Haddon-Cav, "The Nimrod Review," London Stationary Office,
London, UK, 2009.

[13] J. Thomas, STAMP/STPA Intermediate Tutorial - Guided Exercise:
Applying STPA to a real system.

[14] A. Wassyng, T. Maibaum, M. Lawford, H. Bherer, R. Calinescu
and E. Jackson, "Software Certification: Is There a Case against
Safety Cases?," in 16th Monterey Workshop, Redmond, WA, USA,
2011.

[15] C. Hobbs, M. Llyod, C. Dale and T. Anderson, "The Application
of Bayesian Belief Networks to Assurance Case Preparation," in
Achieving Systems Safety, London, UK, 2012.

[16] P. J. Graydon and M. C. Holloway, "An investigation of proposed
techniques for quantifying confidence in assurance arguments,"
Safety Science, vol. 92, pp. 53-65, 2017.

[17] P. J. Graydon, "Defining Baconian Probability for Use in
Assurance Argumentation," NASA, 2016.

