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Abstract — Safety cases are an essential artifact for 
establishing the safety of complex systems. Industrial use of safety 
cases varies between industries. Due to inconsistent regulatory 
guidance, numerous different strategies, notations, and techniques 
have been developed for safety case construction. Eliminative 
Argumentation (EA) has been proposed as a technique to 
systematically improve confidence in a safety case via ‘defeasible 
reasoning’ wherein reasons to doubt safety claims are introduced 
and subsequently eliminated. Elimination of doubt results in 
increased confidence. This paper reports on the application of EA 
to seven different software-intensive systems in the automotive, 
rail, and industrial control industries. Our experiences suggest 
that EA’s doubt-driven approach to safety argumentation 
increases confidence in a safety case and can be used to support 
activities such as independent safety assessments and safety 
verification and validation. From our experiences we synthesized 
into a set of lessons learned. 
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I. INTRODUCTION 

Establishing the safety of complex systems is a significant 
challenge. Such systems are comprised of many elements, each 
with their own non-trivial behaviour. Since safety (defined for 
the purpose of this paper as “absence of unreasonable risk” [1]) 
is a system property, ensuring safe system behaviour requires 
understanding how each element contributes to the functionality 
of the system as a whole. In many projects, many individuals are 
involved with creation of a system. As a result, the rationale for 
the safety of a system is often distributed among subject matter 
experts. The problems associated with understanding system 
safety are heightened in software-intensive systems that contain 
complex functionality and rely on non-trivial mechanisms to 
achieve safe operation.  

Safety cases are an accepted means of capturing the rationale 
for a system’s safety. A safety case is “a clear, comprehensive 
and defensible argument, supported by evidence, that an item is 
free from unreasonable risk when operated in an intended 
context” [1]. Some safety standards such as ISO 26262 and EN 
51026 require the creation of a safety case; however, they offer 
varying levels of guidance on the content of this critical artifact. 
ISO 26262 emphasizes the importance of sound relationship 
between the argument and supporting evidence: “an argument 
without supporting evidence is unfounded, and therefore 
unconvincing. Evidence without an argument is unexplained, 
resulting in a lack of clarity as to how the safety objectives have 
been satisfied” [1]. We emphasize the second point: a safety case 

must be more than a “box of test results”. In our experience, lack 
of structure contributes to conceptual gaps in verification and 
validation activities. However, ISO 26262 does not provide 
additional guidance and the precise content of the safety case is 
left open to interpretation.  

EN 51026 prescribes the content of a safety case as a 
collection of reports and analyses of various failure/fault 
conditions, i.e., it is heavily focused on evidence without an 
argument [2]. Other standards, such as IEC 61508 for industrial 
control and DO-178C for airborne software do not require the 
explicit creation of a safety case [3, 4]. These standards 
collectively rely an “implicit safety case” because they do not 
directly argue the safety of a product itself but instead depend 
on the implication that a rigorous process results in a safe 
product [5].  

In the absence of authoritative and uniform regulatory 
guidance for creating safety cases, different conventions and 
techniques have been developed by academia and industry. Goal 
Structured Notation (GSN) was created by Tim Kelly and is the 
most widely recognized notation for describing safety 
arguments [6]; standards prescribing the syntax and semantics 
of GSN have been created in an effort to achieve uniformity 
across industries [7]. Other techniques for describing safety 
cases include “Claims-Argument-Evidence” (CAE) notation 
[8], and structured textual narrative. We have worked with some 
of these techniques in the past and have found them satisfactory.  

Eliminative Argumentation has been proposed as an 
additional technique for the creation of safety cases [9]. The goal 
of EA is to systematically increase confidence in a safety case 
via the use of a defeasible reasoning. We have found that 
defeasible reasoning has changed the way we approach safety 
argumentation and results in a better understanding of the 
system under investigation. The main contribution of this paper 
is a set of “lessons learned” from the application of EA to several 
real-world safety-critical systems. The remainder of this paper 
is structured as follows. Section II provides a short introduction 
to EA. Section III summarizes our experience applying EA to 
real-world systems. Section IV provides the set of “lessons 
learned”. Section V makes concluding remarks. 

II. OVERVIEW OF ELMINATIVE ARGUMENTAITON 

Eliminative Argumentation (EA) was introduced by 
Goodenough et al. as an adaption of Toulmin’s notation [9, 10, 
11]. EA provides an abstract framework for constructing an 
argument and assessing confidence in the argument based on the 
notion of defeasible reasoning where in claims are recursively 



challenged. As reasons to doubt a claim are eliminated 
confidence in the claim increases. This section provides 
motivation for the use of EA, introduces the key concepts of 
technique, and provides a demonstration of EA on a toy 
chemical reactor system. 

A. The Role of Doubt in Safety Argumentation 

Safety argumentation is invariably impacted by confirmation 
biases that arise when authors aim to directly “prove” a system 
is safe. A notable example of confirmation bias related to safety 
argumentation was revealed as part of a review following the 
fatal crash of the Nimrod, a UK military aircraft, in Afghanistan 
in 2006. In the investigation, it was found that: 

 “the Nimrod Safety Case [was] fatally 
undermined by an assumption by all the organisations 
and individuals involved that the Nimrod was ‘safe 
anyway’, because the Nimrod fleet had successfully 
flown for 30 years, and they were merely documenting 
something which they already knew. … The Nimrod 
Safety Case became essentially a paperwork and ‘tick-
box’ exercise” [12]. 

Typically, a safety case starts with a top-level safety claim 
and then recursively decomposes that claim into sub-claims 
which are eventually supported by evidence. Conventional 
techniques do not (at least as part of the standard notation) leave 
room for expression of doubt. As a result, authors of a safety 
case are not prompted to question their claims or validity of 
evidence. The task of creating a safety case is then reduced to 
making the minimum set of claims required to prove the top-
level claim rather than seeking to demonstrate an acceptable 
level of residual risk. 

However, in practice, engineers have many reasons to doubt 
the safety of a system. For example, in software engineering, 
there is a strong culture of doubting whether software is in fact 
defect free. This is so prevalent that the creation of defect free 
software is regarded as axiomatically impossible among 
software engineers. One would be hard pressed to find a 
software engineer who will claim the software they create is 
defect free. Doubting oneself and subsequently eliminating 
those doubts with further claims and evidence is central to the 
scientific and engineering approach to problem solving. The 
methods of safety argumentation should take advantage of this 
fact. There should be an explicit means to capture, express, and 
analyze doubts that engineers have about the systems they 
create. Only after the residual risk associated with the doubts is 
understood can a informed conclusion about the safety of the 
system be formulated.  

Of course, enumeration of doubt is not, on its own, sufficient 
to defeat confirmation bias. Enumeration of doubt only shifts the 
question from “do the sub-claims completely support the top-
level claim?” to “have all of the sources of doubt been 
identified?” However, doubt can also be expressed about the 
completeness of the doubts themselves which in turn 
necessitates further argument about the completeness. For 
example, one might doubt the completeness of a set of failure 
modes derived for a component in the system based on a Failure 
Modes and Effects Analysis (FMEA). An argument countering 
this doubt might claim that a combination of experienced 

persons and systematic methodology provide confidence in the 
completeness of the failure modes. Regardless, a residual doubt 
exists that maybe a failure mode was overlooked. This residual 
doubt should be captured and communicated to stakeholders as 
a risk associated with the design process used to create the 
component.  

At this point, it should be noted that our concerns are not 
with individual safety cases (or their authors). It is not meant to 
imply that all safety cases developed by conventional methods 
are deeply flawed. Indeed, there are exceptional safety cases 
developed using conventional techniques that convincingly 
argue the safety of complex systems. The main concern here is 
the ability of engineers to express, analyze, and subsequently 
refute their natural doubts when using a conventional 
technique/notation and the role of this mode of thought in 
addressing confirmation bias.  

EA addresses the question confirmation biases by including 
the notion of doubt as a first-class citizen. The EA notation calls 
these doubts “defeaters” in the sense that they are used to defeat 
aspects of an argument. There are three types of defeaters [9]:  

 Rebutting Defeaters (RD) express doubt about a claim. 
For example, one might claim “the valve will open when 
commanded” which could be rebutted by “unless the 
valve is stuck closed”.  

 Undermining Defeaters (UM) express doubt about 
evidence provided in support of some claim. For 
example, in a software project, one might provide 
evidence of laboratory test results to support the claim 
that a requirement as been satisfied. This evidence might 
be undermined by a defeater: “unless the laboratory 
environment is not the same as the operational 
environment”.  

 Undercutting Defeaters  (UC) express doubt an 
inference rule used to combine multiple aspects of an 
argument. For example, an argument that adopts the 
strategy to argue that all hazards have been adequately 
mitigated has an (implicit) inference rule that “if all 
failure modes have been adequately mitigated, then no 
hazard can occur”. The undercutting defeater doubts the 
inference rule by questioning its premise: “unless there 
was a failure mode that was not identified”. 

To illustrate the above defeaters, consider a fictious chemical 
reactor, adapted from the example in [13]. A chemical reaction 
is carried out in a reaction vessel. The reaction temperature is 
managed by adding water from an external water reservoir. The 
flow of water is controlled by a control computer that actuates a 
water valve. The temperature of the reaction is measured by a 
sensor that provides feedback to the control computer. The 
control computer uses a sophisticated control algorithm to 
determine how much water to provide to the reactor. Figure 1 
contains a sample EA-based safety argument that starts with the 
claim that the control system provides enough cooling to prevent 
the reactor from overheating (assuming overheating is a 
hazardous event). Note that this top-level claim might a sub-
claim of a larger argument.  



This example is not intended to be a complete argument, 
instead it demonstrates the key elements of the EA technique, 
namely: 1) enumeration of doubt, 2) elimination of doubt, 3) 
explicit description of inference rules, and 4) acceptance of 
residual doubt. We adopt a similar syntax and semantics to those 
defined by Goodenough et al. with only minor variation:  

 Claims (C) are statements that must be supported further 
argumentation to demonstrate their validity.  

 Evidence (E) describe observations, data, or artifacts that 
support claims.  

 Strategies (S) describe the approach used to organize a 
collection claims or defeaters. Strategies are “top-down” 
in the sense that capture an overall approach to 
supporting a claim. 

 Inference Rules (IR) describe how to logically combine 
a collection of one or more claims/defeaters to support a 

parent claim. Inference Rules are “bottom-up” and 
complement Strategies. Inference Rules are often 
obvious in an argument and do not need to be expressly 
stated every time. However, when non-obvious logic is 
employed or there is a reason to doubt the validity of an 
inference rule, then inference rules are explicitly 
included in the argument.  

 Context (X) provide additional information, that is not 
required to create a sound argument but is helpful for 
orienting the reader. Context is not used in Figure 1. 

 Assumptions (A) are explicit statements that are 
assumed to be true as part of an argument. If an 
assumption is not satisfied, then the argument would 
become invalid. Assumptions are not used in Figure 1. 

 Terminators denote the end of a line of reasoning as 
either:  complete (OK), a source of residual doubt (Res), 
or undeveloped (shown as a diamond).  

 

 
Figure 1 - Sample argument for a chemical reactor. 

B. Assessing Confidence in an Argument 

Assessing confidence in a claim or evidence remains a 
concern [14]. How can a reviewer be confident that safety case 
adequately argues its stated claims? Enumeration and 
elimination of doubt might reduce confirmation bias, but to what 
extent does it do so? This quickly becomes a problem when 

developing a safety case for a complex system that combines 
multiple sub-arguments for different system elements and relies 
on a combination of qualitative and quantitative evidence.  

A doubt-driven EA safety case may supplemented with 
numerical data in an attempt to quantify confidence. To this end, 
Goodenough et al. propose two methods [9]. In their first 



method, probabilities are assigned to doubts in an argument and 
combined similarly to combining probabilities in a fault-tree 
analysis. This is also similar to other quantitative approaches for 
confidence assessment such as Bayesian Belief Networks 
(BBNs) [15]. However, a probabilistic approach suffers from 
concerns related to the choice of numerical values which are 
known to produce inconsistent results due to variability in 
judgement on the part of analysts [16]. To address this 
limitation, Goodenough et al. suggest using a qualitative scale 
and translating the selected categories into numerical values 
based on fuzzy logic, but this idea has not been developed [9]. 

Goodenough et al.’s second method is a semi-quantitative 
approach based on the notion of a Baconian confidence [11]. In 
this approach, the status of a defeater is either “fully eliminated” 
(i.e., no longer a concern) or “residual”. Residual defeaters are 
counted and compared to the total number of defeaters in the 
argument to obtain a confidence level expressed as “X | Y” 
where X is the number of unaddressed defeaters (residual 
doubts) and Y is the total number of defeaters. This relatively 
simple technique is based on the premise that confidence in an 
argument increases as doubts in the argument is eliminated.  

III. EXPERIENCES DEVELOPING SAFETY CASES 

This section describes our experience developing seven 
safety cases using EA. Each safety case is discussed in detail 
below. Discussion is limited to general commentary to avoid 
disclosure of private and proprietary information. In  

Table 1 the number of nodes in the safety case is reported by 
EA node type. The total number of nodes is computed as the sum 
of all node types except for Residual Doubts (“Res.”). The 
Residual Doubts are a subset of the Defeaters (“RD”, “UM”, 
“UC”); therefore, the Residual Doubts are excluded from the 
sum to avoid double counting.   

A. Safety Cases 1, 2, 3 - Embedded Automotive Software 

Safety cases 1, 2, and 3 were all created for low-level 
embedded software products used in automotive systems. These 
safety cases have a broad scope that spans all phases of the 
software development lifecycle as defined by ISO 26262. The 
safety cases covered the definition of the software requirements, 
software architecture, detailed design, implementation, unit 
verification, and integration testing on target hardware. The low 

level of abstraction coupled with the complexity of software is 
responsible for their relatively large size. 

Safety case 3 was created for a notably simpler embedded 
software product, hence the difference in size from safety cases 
1 and 2. However, it is worth noting that the distribution of node 
types relative to the total number of nodes remains consistent 
between safety cases 1, 2, and 3. 

Safety Cases 1, 2, and 3 cases were reviewed by a reputable 
independent authority and accepted as part of an ISO 26262 
compliance audit for their respective products.  

B. Safety Cases 4, 5, and 6 – ADAS Sensor Function  

Safety case 4 was created for  an automotive Advanced 
Driver Assistance System (ADAS) sensor system. The safety 
case was created  at the functional (“black box”) level of 
abstraction and aimed to demonstrate the safety of the intended 
functionality of the product, particularly in relation to the 
behaviour of the external environment (e.g., weather 
conditions). In this project, an iterative EA-based approach was 
used refine the functional requirements of the system to better 
address concerns related to the external environment.  

Safety cases 5 and 6 were for a signal processing function 
for use in a rail application. These safety cases were created to 
demonstrate the safety of a signal processing algorithm in a 
specific operational context. The emphasis of these two safety 
cases was on identifying validation activities that would increase 
confidence in the algorithm’s behaviour given a wide range of 
inputs. The use of an iterative EA-based approach helped 
structure and focus the overall safety validation effort. 
Additionally, safety case 6 subsumes safety case 5, i.e., the 
algorithm related to safety case 5 is used as part of a more 
complex algorithm for safety case 6. Safety cases 5 and 6 were 
developed in the context of a broader EN 5012x compliance 
effort that focused on the product(s) that would incorporate the 
signal processing algorithms. 

The smaller size of safety cases 4, 5, 6 is attributed to the 
higher level of abstraction used to create this safety case. If the 
arguments had been further developed to encompass the details 
of hardware and/or software development, it is anticipated that 
these safety cases would have grown much larger.

 

Table 1 – Summary of safety cases developed using EA; includes number of each EA node type used for each argument. 

   Number of Each EA Node Type Used 

# Application Type Industry C E RD UM UC IR A X S Res. Total 

1 Embedded Software Automotive 184 147 142 - 1 10 10 17 2 19 513 

2 Embedded Software Automotive 188 144 117 11 2 2 6 13 1 28 484 

3 Embedded Software Automotive 94 81 79 - - - - 3 - 7 257 

4 Embedded Software Automotive 63 19 62 - - - 2 - 3 25 149 

5 Signal Processing Algorithm Rail 33 21 30 - 3 3 - 1 4 - 95 

6 Signal Processing Algorithm Rail 23 4 - - 3 3 - 3 4 - 40 

7 Monitor & Interlock System Industrial Control 7 1 5 - - - - 1 - - 14 



C. Safety Case 7 – Industrial Interlock System 

Safety case 7 is for a predictive safety monitor and 
interlock system used in an industrial application and is being 
developed as part of an IEC 61508 compliance effort. The 
system in question uses software to predict the behaviour of a 
physical process and engages an interlock if/when the process 
under control violates predetermined thresholds. The safety 
case’s scope spans the entire monitor and interlocking system 
from top-level functional behaviours through to detailed 
hardware and software development. A key challenge 
associated with safety case 7 is demonstrating that the 
predictive functions of the monitoring system accurately 
predict the true behaviour of the process under control; early 
use of EA has been helpful in structuring the overall safety 
strategy in this regard.  

This safety case is still in early development and is 
evolving with the development of the system. The number of 
nodes reported in  

Table 1 represent the top two layers of the EA argument 
tree (i.e., root node and direct children) and are related to 
hazards and safety goals (system-level safety requirements). 
Safety case 7 will undergo independent review as part of the 
industrial system’s overall certification effort. 

D. Remarks on Argument Size 

Based on  

Table 1, the safety cases discussed above are of varying 
size with the largest having 513 nodes and the smallest 
(excluding safety case 7 which is currently under 
development) having 40 nodes. We emphasize that the total 
number of nodes is not an absolute indicator of completeness 
or quality. In our experience, argument size (measured as 
number of EA nodes) depends on the system size, system 
complexity, and chosen level of abstraction (e.g., functional, 
software, hardware, etc.).  

IV. LESSONS LEARNED 

While developing the EA-based safety cases described 
above, we have made many observations about both the EA 
technique and safety case development in general. We have 
distilled these into the “lessons learned” provided below. 

A. Lesson 1: EA is easy to learn 

We have had success introducing EA to both technical and 
non-technical individuals. The overall pattern of thought 
(claim, defeater, claim, defeater, … ) is a natural style that 
many people are already comfortable using. In one particular 
case, we lead an engineering meeting to introduce EA to a new 
project; we anticipated hesitant participation from the 
engineers in the room. However, in a matter of minutes, the 
participants began enthusiastically constructing an argument 
for their system with minimal guidance.  

We have found that, especially when introducing EA to a 
new group, it is easier to use a simplified version of the 
notation that permits only claims, evidence, and a single 
generalized defeater. This reduces the notational barrier to 
adopting EA and helps focus on the primary purpose of the 
technique, namely, enumerating and eliminating doubt. More 

sophisticated notations can be applied later once the overall 
argument structure has established. 

While we believe that EA is easy to learn for beginners, 
we also know from experience that mastery of the technique 
is challenging. Many aspects of EA require a nuanced 
perspective that comes with practice. For example, EA’s 
Interference Rule (IR) node type allows the user the express a 
specific (possibly non-obvious) rule for combining multiple 
claims in support of a parent claim. When coupled with an 
Undercutting defeater (UC), this becomes a powerful means 
of eliminating doubt related to the soundness of the safety 
argument. However, overuse of this reasoning pattern 
becomes cumbersome and difficult to understand for a 
reviewer. Therefore, thoughtful use of this pattern is required. 
We have only begun to appreciate the usefulness of the more 
subtle aspects of EA.  

B. Lesson 2: EA supports independent review  

We have found that the doubt-driven approach of EA helps 
engineering teams prepare for independent  safety 
assessment/audit (e.g., an ISO 26262 compliance assessment). 
Doubts enumerated during EA-based safety case development 
often correspond to questions that a reviewer might pose to the 
engineering team. The systematic elimination of these doubts  
in the safety case means that there is often a thoughtful answer 
prepared in advance for questions from the reviewer. 
Moreover, since EA demands evidence be presented as part of 
elimination of doubt, the required documents/artifacts are 
prepared and organized in advanced. Having this information 
consolidated within the safety case results in a smoother 
review process and avoids a last minute “scramble” for 
answers.  

On one occasion, an independent reviewing authority 
remarked that the EA-based safety case useful for structuring 
their thinking about the safety of the system under review. 
This demonstrates the value of a structured approach to safety 
case development, which is consistent with the overall value 
proposition of structured safety argumentation [6].  

C. Lesson 3: The importance of doubt 

We have found the explicit permission to express doubt as 
defeaters is very helpful in communicating concerns and 
limitations of a system. Expression of doubt often leads to 
productive conflict amongst team members where one party 
expresses a doubt and the other refutes it. In our experience, 
such conflict (when appropriately managed) leads to a better 
understanding of the system and ultimately a stronger safety 
case. Of particular importance are residual doubts resulting 
from un-eliminated defeaters. The existence of residual doubt 
is not a “bad” outcome of a safety case. As discussed above, 
these are the basis for assessing the residual risk associated 
with a system. All safety-critical systems have some residual 
risk, the use of EA simply highlights this risk. Adopting EA 
as part of a safety engineering process necessitates a review of 
residual doubts by stakeholders as part of acceptance of the 
safety case.  

While we view doubt as an essential part of EA, as a 
practical matter, it is important to know when to stop. Indeed, 
one could doubt themselves ad infinitum. While we cannot 



offer specific criteria for when “enough is enough”, we have 
found that a combination of a rigorously defined scope (e.g., 
application level software, not supporting software or 
hardware) in combination with reasonable engineering 
judgement to be effective. 

In the end, safety case development is “messy” work. The 
literature leaves the impression that safety cases should be 
near-perfect tree structures that argue the safety of a system 
using a handful of non-specific claims. However, in our 
experience, reality rarely conforms to this idealized notion of 
a safety case. Complex systems demand complex and nuanced 
safety arguments that inevitably produce residual doubt. We 
would be suspicious of a safety case that was free of residual 
doubt.  

D. Lesson 4: Develop early, revise often 

For safety-critical systems, safety influences all phases of 
the system development lifecycle, from early concept 
development through to deployment and maintenance. Such 
thinking is adopted by prominent functional safety standards 
such as ISO 26262 that intentionally “weave” safety 
engineering activities into conventional V lifecycle model for 
system development. As a result, the reason(s) a system is safe 
are often determined in the early phases of product 
development. That is, engineering teams begin creating an 
implicit safety case almost immediately. We have found it 
instructive to use EA to capture these preliminary safety 
arguments and have observed two main benefits of this 
practice. First, clearly articulating (in a structured format) the 
reason(s) that is a system is safe is productive exercise early 
in a project to ensure a team has a common understanding of 
the problem at hand. Second, expressing doubts about a design 
early in development highlights weakness early and can be 
used to focus subsequent design efforts.  

However, we have also observed that defining the top-
level claims of an EA-based safety case is the most 
conceptually challenging phase of safety case creation. Top-
level claims make very broad assertions about the behaviour 
of the system in question and must be articulated carefully so 
as to not inadvertently extend the scope of the safety case 
beyond what can be demonstrated by evidence. 
Comparatively, lower-level argumentation tends to be more 
procedural often relying on well-established engineering 
processes/principles to support specific claims.  

One of the primary principles of EA is “defeasible 
reasoning” wherein one repeatedly refines the argument based 
on doubt. Our experience supports this principle: safety cases 
should be developed early and revised often.  

E. Lesson 5: Support system verficiation and validation  

As part of a “develop early, revise often” approach (Lesson 
5), we have found that EA helps to identify, in advance, the 
types of verification and validation activities required to 
support safety claims. From a technical perspective, this 
provides a top-level view of how many different verification 
and validation activities fit together to form a cohesive safety 
argument. From project management perspective, this 
provides an input to planning verification and validation 
activities and identifying risk associated with each activity. 

Additionally, doubt-driven thinking helps focus on 
meaningful verification and validation activities by permitting 
the expression of doubt about the verification and validation 
activities themselves. This is in contrast to following a 
standard engineering process that might (or might not) 
generate convincing evidence in support of safety claims. We 
have found this particularly helpful in the context of novel 
development where standard processes/techniques are 
insufficient and new techniques used to fill gaps. As part of 
EA-based safety case development, we often maintain a 
“shopping list” of evidence required to support the argument. 
This forms an interface between various stakeholders in the 
project (management, design team, quality assurance, etc.) 
and can be used as an input to verification and validation 
planning activities.  

F. Lesson 6: More than a fault tree analysis 

On first appearance, an EA safety case resembles a Fault 
Tree Analysis (FTA). This is one of the first reactions we often 
receive when introducing EA to a new project. Indeed, there 
are many similarities between EA and FTA. Both EA and 
FTA are tree structures, both are deductive (top-down) styles 
of reasoning, and both permit the expression of negative 
events/concepts (defeaters in the case of EA, faults in the case 
of FTA). However, there are key differences between these 
two techniques. 

First, the top-level node in FTA is usually a “bad event”, 
e.g., “the reactor overheats”. Conversely, EA (like all safety 
cases) starts with a top-level claim/goal that is positive, e.g., 
“the reactor will not overheat”. This difference shifts the intent 
of the supporting sub-tree from finding causes of a “bad 
event” to defeasible reasoning on the top-level claim. Second, 
FTA focuses on components in a system and describing how 
the failure of the components, in conjunction with other 
failures, might result in the top-level event occurring. That is, 
FTA focuses on a specific type of defeater related to 
component failure. EA defeaters consider a wider set of 
doubts that indeed covers component failure but also include 
non-fault/failure functional behaviours, engineering 
processes, soundness of claims, and completeness of 
evidence. Due to these differences, we view FTA and 
complementary to EA. FTA is a specific analysis technique 
for generating evidence about failure scenarios that can be 
used to support specific claims in a safety argument regarding 
the tolerance of the system to faults and failures. 

G. Lesson 7: Confidence assessment remains challenging 

One of the value propositions of EA is increased 
confidence in safety based on the idea of enumerating and 
eliminating doubts about claims. We agree that this, in 
combination with consideration of residual doubt, 
qualitatively increases confidence. However, we have yet to 
see value in the Baconian or probabilistic confidence 
measures proposed by Goodenough et al. For both measures, 
our criticism is similar to Graydon’s [16, 17]. First, Baconian 
confidence is blind to relative importance of residual doubts 
and assessment of confidence still requires expert judgement 
to resolve/accept the associated residual risk. Second, 
measures of probabilistic confidence are strongly influenced 
by the choice of numerical values, a task that is challenging 



for all but the simplest types of failures (e.g., how does one 
accurately quantify the probability of a software defect 
occurring?). Regardless, we think that assessing confidence in 
an argument is an important pursuit and merits further work.  

V. CONSLUSIONS 

This paper has motivated and introduced the essential 
concepts of Eliminative Argumentation (EA) as a technique 
for the development of safety cases. This technique improves 
confidence in a safety case by allowing the creators of a safety 
case to enumerate and eliminate doubt in a safety claims in a 
structured manner. We have recounted our experience 
developing seven EA-based safety cases and offered seven 
“lessons learned” based on our experience. We view safety 
cases as an important part of a mature safety engineering 
processes and we have found that EA is a good technique for 
the development of such arguments. While we have observed 
many benefits of EA, we do not mean to imply that this 
technique should be used as a sole means of safety analysis for 
a safety-critical system; the opposite is in fact true. EA, like 
any safety case, should be used to structure and complement 
established engineering practices to improve overall system 
development outcomes. 
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