Challenging Autonomy with Combinatorial Testing

Simon Diemert
Critical Systems Labs Inc.
Vancouver, Canada
simon.diemert@cslabs.com

Abstract—This paper describes an input space modelling and
test generation method called CACTus (Challenging Autonomy
with Combinatorial Testing) that creates a suite of ‘challenge
scenarios’ for autonomous systems. Though the parameter space
for autonomous systems is vast, CACTus helps to reduce the
parameter space using combinatorial testing and by incorpo-
rating expert judgement into the formulation of the scenarios.
The resulting scenarios can be executed on appropriate test
infrastructure, such as simulators or hardware-in-loop testing.
CACTus may be used by practitioners to exercise systems as part
of efforts to obtain compliance with standards like ISO 21448 or
UL 4600. The method is applied to generate test scenarios for
the perception system of a commercial autonomous vehicle.

Index Terms—combinatorial testing, input modeling, au-
tonomous systems, autonomous vehicles

I. INTRODUCTION

Autonomous vehicles (AVs), such as Motional’s commercial
robotaxi, must handle a diverse range of external conditions,
including weather, varying road geometries, agent appear-
ances, and agent behaviours. Requirements to manage external
conditions are addressed by various industrial standards, such
as ISO 21448 - Road vehicles - Safety of the intended function
[1] and UL 4600 - Evaluation of Autonomous Products [2].
The number of combinations of external conditions is vast.
Consider just the variability associated with a single pedes-
trian; attributes such as height, age, hair style, hair color, skin
colour, clothing colour, clothing style, body position, and so
forth might impact the performance of an AV’s perception
sub-system. Machine learning (ML) methods such as Convo-
lutional Neural Networks (CNNs), which are widely used to
perform the object detection and classification tasks within
perception sub-systems, can be sensitive to minor variation in
the inputs, especially when the inputs are ‘novel’, i.e., where
not adequately represented in the ML component’s training
data [3]. Failure to detect or correctly classify objects has
contributed to fatal accidents involving AVs [4], [5].

Safety-critical systems typically undergo extensive verifi-
cation and validation, including testing, to demonstrate they
have safely implemented the desired behaviour. For instance,
both ISO 21448 and ISO 26262 - Road vehicles - Functional
safety [6] provide guidance on engineering practices for de-
veloping safe and dependable automotive systems; testing is a
cornerstone method in both standards. However, testing of AVs
poses a significant challenge: it is simply not possible to test
(in simulation or the field) every possible input combination to
an AV’s perception, prediction, and planning pipeline [7], [8].

Adam Casey
Critical Systems Labs Inc.
Vancouver, Canada
adam.casey @cslabs.com

Jeremiah Robertson
Motional AD Inc.
Boston, USA
jeremiah.robertson @motional.com

Even if testing every input (or significant subset) was feasible,
it is likely that many tests would be uninformative (i.e., not
revealing defects or safety issues) resulting in an ineffective
use of resources. Given finite testing resources, there is a need
to select test cases that have a higher likelihood of finding
defects or limitations of the AV’s system(s).

Moreover, simply testing the system(s) is not sufficient. It is
also necessary to assess the quality (coverage, completeness,
etc.) of the test suite to demonstrate that it has covered a
breadth of input conditions. Metrics such as “number of miles
driven” are only meaningful when paired with information
about the breadth of conditions encountered [7], [9]. For
conventional (‘if-than-else’ logic) software and electronics,
standards such as ISO 26262 recommend using methods like
equivalence classes, structural coverage measures (e.g., lines
of code exercised), and modified condition/decision coverage
(MC/DC) measures to assess test suite completeness. However,
these methods are not effective for ML-enabled systems, either
due to fundamental differences between conventional (‘if-then-
else’ logic) software and ML algorithms or simply a failure
to scale to the massive input spaces often used for ML-
enabled systems. For instance, some researchers have adapted
structural coverage measures to neural networks by measuring
the proportion of neurons activated [10]-[12]; however, these
measures might not be an effective measure of test quality
[13]-[15]. Combinatorial Testing (CT) is a method that has
shown promise for conventional and ML-enabled systems,
both for generating test cases and establishing completeness
(up to some combinatorial strength) of a test suite [16]-[19].

A. Combinatorial Testing

CT is a method to generate test sets covering the possible
combinations of input variables to a desired strength ¢. The
strength ¢ defines the number of different parameters that will
be tested for interaction, with a higher value of ¢ resulting
in a greater number of generated tests, and ideally greater
confidence in the thoroughness of testing. Consider a system
with k parameters pq, ..., p; having mq, ..., my values each.
For the trivial case where ¢ = 1, combinatorial testing would
produce a test set where every value of each parameter is
present at least once, producing at least as many test cases
as the greatest number of values associated with a single
parameter, My, q,. This minimal case fully covers the possible
individual inputs to the system, but does not investigate the
possible interactions between inputs. At the other end, using

https://orcid.org/0000-0001-9493-7969

t = k would test every possible combination of input values
and produce test cases numbering Hle m;. Values of ¢
between 1 and k£ will produce test sets numbering between
these extremes. It has been suggested that ¢ < 6 is sufficient
for most conventional software systems [20].

ISO 21448 (Sections 10.3 and 10.4) identifies CT as a
method for deriving test cases over a range of environmental
conditions and says that “judicious use of the principles of
combinatorial testing can be applied” [1]. However, it does
not provide further guidance as to how this method should
be used to create meaningful test cases, especially for large
or complex operational domains, such as those encountered
for an AV. This poses a problem for practitioners who want to
apply the guidance from industrial standards but become stuck
when those methods do not scale to the vast input spaces for
applications like autonomous driving.

B. Overview of Contribution

There is a need to create meaningful test suites that exercise
autonomous systems in a manner that is consistent with the
guidance from industrial standards, covers a variety of input
combinations, and that are practical in terms of scale. In this
paper, we introduce CACTus (Challenging Autonomy with
Combinatorial Testing), a method for modelling the system
input space and deriving a suite of ‘challenge scenarios’ that
cover (up to a desired combinatorial strength) relevant aspects
of an AV’s operating conditions. The results of applying
CACTus can be used as an input to field or simulation-
based test activities. More concretely, the contribution of this
paper is two-fold: 1) a description of the CACTus method for
generating challenge scenarios for autonomous systems; and
2) an experience report of applying CACTus to generate test
scenarios for Motional’s AV’s perception system.

II. THE CACTUS METHOD

CACTus (Challenging Autonomy with Combinatorial Test-
ing) is an input space modelling and test scenario generation
method. The output of CACTus is a set of concrete test
scenarios that exercise the system-under-test over the opera-
tional design domain (ODD). The scenarios output by CACTus
could be used for a range of testing activities, including
bench testing, software-in-loop simulation, hardware-in-loop
simulation, or closed course testing. CACTus can also be used
“in reverse” to assess the combinatorial coverage of a pre-
existing set of concrete scenarios; see further discussion in
Section V. An overview of CACTus is depicted in Figure 1.

In this section, CACTus is illustrated using the example of
an AV’s perception system that detects and classifies pedestri-
ans, cyclists, and vehicles. The perception system consumes
raw sensor data from lidar, radar, and cameras, and outputs
object detections that are used by other systems to control
the vehicle’s motion. Failing to detect an object could result
in the vehicle executing a trajectory that collides with the
missed object. Therefore, it is important that the perception
system accurately detects objects, especially vulnerable road
users like pedestrians or cyclists.

A. Step 1) Define Operational Design Domain (ODD)

The first step of CACTus is to define the ODD for the
system-under-test. The ODD should describe the environment
and situations that the system is expected to encounter during
its operations [2]. For an AV, an ODD should include aspects
such as environmental conditions (e.g., precipitation, time of
day), geographic regions, road geometries (e.g., lane size,
lane delineation, road curvatures), traffic signals and signs,
and reasonably foreseeable agent types, appearances, and
behaviors. Several academic and industrial resources address
ODD definition in more detail, and we refer interested readers
to this work [2], [21]-[24]. For CACTus, it is important
that the ODD be expressed using a taxonomy (or similar
structure) to categorize different aspects of the ODD. This
is necessary for subsequent steps that (programmatically) use
the ODD to generate scenarios. Additionally, it is likely that
some aspects of the ODD will not be compatible with each
other. For example, an object of type ‘vehicle’ does not have
a ‘hair length’ attribute but an object of type pedestrian does.
Similarly, some environmental conditions are incompatible
such as heavy rain and clear skies. Therefore, in addition to
an ODD taxonomy, the ODD specification should also include
compatibility matrices describing which aspects of the ODD
may be reasonably combined when creating scenarios. As with
the ODD itself, these matrices are represented in a format that
can be easily consumed by a computer program.

a) Example - ODD for Object Perception System: For
our illustrative example, we consider the ODD for a perception
system designed to detect other road users. For this ODD, we
considered environmental conditions (e.g., amount of rainfall,
dust, ambient lighting, and temperature, etc.), sub-types of
each type of road users (e.g., vehicle has sub-types SUV,
sedan, pickup truck, box truck, bus, etc.), and attributes of
each type (e.g., pedestrians vary by height, aspect ratio, skin
color, clothing style, etc.). Each element of the ODD has
a unique identifier that also defines its location within the
taxonomy, e.g., 1.1.1.1.3.2 is a livestock trailer. In total, the
ODD for our perception system contains 199 object types,
57 environmental conditions, and 166 attributes. We have
defined two compatibility matrices, one for object attributes
and another for environmental conditions.

B. Step 2) Identify Logical Scenario(s)

In the second step of the CACTus methodology, expert
knowledge and intuition is combined with technical data (e.g.,
system architecture, ODD, SOTIF analysis results, etc.) to
identify one or more logical scenarios. A logical scenario is
an abstract description of a family of tests that will exercise a
particular behavior of the system-under-test. Logical scenarios
cannot be directly executed, instead they must be instantiated
into one or more concrete scenarios that can be executed on
the corresponding test infrastructure (e.g., within a simulator);
see Step 4 below.

The description of each logical scenario must include a rai-
son d’etre, i.e., it must capture a credible set of conditions that

obD
Specification

A [Coverage
| ' H . . Not Acceptable] Legend:
' Z Z v v i Legend
o g q Activit,
1) Define ODD 2) Identify Logical 3) Parameterize 4) Generate 5) Assess [Coverage _,@ 4
Scenarios Logical Scenarios Concrete Scenarios Coverage Acceptable] :’ Dat
ata
A A A H A
R S I H H H s > Data Flow
H
System SOTIF Engineering | Logical Coverage —» Control Flow
Arct{itecture Analysis & Intutition and L= =D Scenario f--- o ______ N Concrete | s------- Re, ort(gs)
Mitigations Judgement Specifications Scenarios P . @ Start / Stop

Fig. 1. Overview of CACTus method for generating concrete test scenarios.

are expected to challenge and reveal limitations of the system-
under-test. In scientific terms, the description of a logical
scenario should contain a challenge hypothesis that describes a
belief about the conditions that will be difficult for the system-
under-test to handle. The goal of CACTus is to generate test
cases that demonstrate that the challenge hypothesis is true
(i.e., that the system-under-test is indeed challenged by the
conditions). Execution of these tests generates evidence that
can be used to determine if the challenge hypothesis can
be rejected, in support of an alternative hypothesis that the
system-under-test is not challenged by the identified condi-
tions. Additionally, part of specifying a challenge hypothesis
is describing the hypothesis rejection criteria. After executing
the tests, the results should be assessed against the criteria
to determine if the challenge hypothesis can be rejected.
A simplistic rejection criterion might be that all tests pass
(according to some pre-defined pass criteria). However, other
rejection criteria are also possible. Our notion of a challenge
hypothesis parallels that of a null hypothesis used in empirical
studies; from this perspective, there are a few important points.

First, like a null hypothesis, rejecting a challenge hypothesis
does not unquestionably prove the validity of the alternative
hypothesis. Though it is common in hypothesis testing to
accept the alternative hypothesis if the null hypothesis is
rejected, this does not mean that the alternative hypothesis
is absolutely, unquestionably true. Replication experiments or
different experimental conditions might yield different results.
If the challenge hypothesis is rejected, one cannot assume
that that the system-under-test has perfect performance in
challenging conditions. Indeed, when testing complex systems,
such as AVs, it is not possible to test every permutation of
inputs such that claims of “perfect performance” are proven
with certainty.

Second, the logical scenario’s formulation (and subsequent
detailed specification, see Step 3) must be viewed through the
lens of demonstrating the validity of the challenge hypothesis.
That is, the analyst specifying the logical scenario must
adopt an adversarial mindset to challenge the system-under-
test in accordance with the challenge hypothesis. Without this
mindset, rejection of the challenge hypothesis cannot be used
to support a conclusion about adequacy of the system-under-
test. The confidence that can be derived from rejecting the
hypothesis that the system is challenged by certain conditions

is only as strong as the challenge that is presented by those
conditions. If the analyst were to specify unchallenging logical
scenarios, rejecting the challenge hypothesis, and inferring that
the system is not challenged by these conditions, would pro-
vide little confidence in the system’s real-world performance.

Finally, in empirical research it is common to use sta-
tistical tests (e.g., a T-test) to determine whether to reject
a null hypothesis. One advantage of statistical testing is
that probabilities of Type I and II errors can be expressed,
which provide a measure of confidence in the results. Though
CACTus does not exclude the possibility of statistical testing,
the rejection criteria are not limited to statistical tests. Non-
statistical criteria (such as number of tests passed) is suitable
for our purpose, but this comes at the cost of not being able
to measure the probabilities of Type I and II errors.

As a practical matter, when describing a logical scenario,
in addition to a challenge hypothesis and assessment criteria,
we have also found it helpful to include: 1) a graphical
representation of the scenario (typically one instance of a
concrete scenario, for illustrative purposes); 2) a narrative
description of the scenario timeline/events; 3) traceability links
to relevant system-level hazards, failure modes, or SOTIF
environmental triggers; and 4) traceability links to applicable
system requirements, including particular SOTIF mitigations.

a) Example - Logical Scenario for Pedestrian Variant:

For our illustrative example, we consider a logical scenario
with a single unoccluded pedestrian positioned near the ego
vehicle; the pedestrian is one of many possible variants. In this
scenario, there are no additional objects, and the environmental
conditions are “fair” (i.e., daytime, no precipitation, dust, or
fog, etc.). The purpose of the scenario is to test whether the
vehicle’s perception system accurately detects and classifies
variants of pedestrians; to this end we formulate the following
challenge hypothesis: CHy - The AV’s perception system
does not detect pedestrians near the ego vehicle with novel
appearances or behaviors.

In this context, the term “novel” is borrowed from the
ML research community and refers to combinations of object
attributes did not appear (with adequate frequency) in the data
used to train the object detection or classification algorithm(s).
This challenge hypothesis is based on the widely reported
limitation of ML-based systems at recognizing novel or out-
of-distribution inputs.

To reject the challenge hypothesis C'Hy, we require that
all pedestrian variants near the ego vehicle are detected and
correctly classified. That is, in all concrete scenarios generated
from this logical scenario, the single pedestrian is detected
and correctly classified. Note that this example is limited
to the task of perceiving objects near the vehicle, so the
rejection criteria does not consider whether the vehicle’s
motion control system(s) avoid the pedestrian; though that is
certainly important, it is not within the scope of this example.

As noted above, we have found that graphical representa-
tions of the scenario help to communicate the scenario intent.
An instance (one possible concrete scenario) of this logical
scenario is depicted in Figure 2, where a pedestrian wearing
an unusual hat that resembles a traffic cone and carrying an
object is shown crossing the road in front of the ego vehicle.

Fig. 2. Depiction of pedestrian variant challenge scenario; ego vehicle in
yellow, pedestrian variant has an unusual hat.

C. Step 3) Parameterize Logical Scenarios

Once the logical scenarios are identified, their definitions
should be refined to include relevant parameters and the corre-
sponding range of values for each parameter. For example, the
distance between the ego vehicle and an object of interest in
the scenario could be a parameter that takes values in the range
0 and 100 meters. The output of this parameterization step is a
set of scenario specifications (expressed in a machine-readable
format, such as the JavaScript Object Notation (JSON)) which
are used to generate concrete scenarios in Step 4.

Analysts parameterizing scenarios should make use of ex-
pert knowledge and judgement to select parameters (and val-
ues) that align with the logical scenario’s intent, as expressed
by the challenge hypothesis. When parameterizing scenarios, it
might be tempting for analysts to pick many parameters and
values that cover every conceivable aspect of the scenario.
For example, in the pedestrian variant example (see Figure
2), the number of lanes of traffic could be identified as a
parameter ranging from one through eight. This might increase
confidence in the completeness of the logical scenario and
the generalizability of the results. However, it also increases
the number concrete scenarios generated in Step 4 and might
contribute to scalability problems without adding much value
in terms of challenging the system-under-test. Instead, when
parameterizing scenarios it is important for experts, guided by
the challenge hypothesis, to use their judgement and select the
most relevant parameters.

One way to reduce the parameter space for the scenario is
to use equivalence classes for parameter values, rather than
complete numerical ranges. For example, if the ego vehicle’s
speed is a parameter, then for scenarios that are not particularly
sensitive to vehicle speed, equivalence classes like 0, 1, 5,
10, 15, 20, ... m/s might be appropriate. Again, engineering
judgement must be used when selecting equivalence classes.
Our example examines a perception system that is not expected
to be sensitive to speed; but a motion-planning or emergency-
braking system might be much more sensitive to speed, so the
input partitioning would require greater attention.

Another way to reduce the parameter space is to define
constraints between the values of parameters to avoid invalid
or meaningless parameter combinations. For example, if an
object’s speed and object type (pedestrian, cyclist, vehicle,
etc.) are both relevant parameters, then, because the top speed
of a pedestrian is certainly lower than the top speed of a
vehicle, additional constraints can be included as part of
the scenario specification to prevent concrete scenarios being
generated where a pedestrian moves at 30 m/s. Note that these
scenario-level constraints are provided in addition to the ODD
compatibility matrices from Section II-A.

Finally, the ODD should guide the parameter selection
process. In particular, the range of values assigned to each
parameter should be based on the values permitted in the
ODD. For example, if rainfall intensity is a parameter for the
scenario, then the intensity values chosen for this parameter
should cover the range of rainfall intensities listed in the ODD.

TABLE 1

PARAMETERS FOR PEDESTRIAN VARIANT EXAMPLE SCENARIO.
Property [unit] # Values Sample 1 Sample 2
Distance (ego to ped.) [m] 6 5 50
Ego Speed [m/s] 9 5 35
Ped. Speed [m/s] 6 2 2
Ped. Heading [deg] 8 135 135
Ped. Position w.r.t Ego [deg] 8 45 180
Ped. Sub-Type 6 Pedestrian Cross. Guard
Ped. Height [m] 9 1.5 1.8
Ped. Silhouette [aspect ratio] 4 1:8-1:2 >1:2
Ped. Skin (Fitzpatrick Scale) 9 FP6 - Dark FP1 - Pale
Ped. Hair Color 13 Brown -
Ped. Hair Length [m] 7 0.30 0.00
Ped. Hair Style 15 Loose Headscarf
Ped. Clothing Color 6 Patterned Reflective
Ped. Clothing Style 11 Costume Normal
Ped. Age [years] 6 0-5 20-60
Ped. Pose 6 Arms Up Hunched
Ped. Carrying Object 16 - Sign
Ped. Activity 25 Walking Running
Ped. Angle of View 6 Left Side Back

a) Example - Parameterized Pedestrian Variant Scenario:
Continuing the illustrative example of a pedestrian variant,
using the challenge hypothesis C'Hy, we selected parameters
that are related to the pedestrian’s appearance and position
and motion of the object (relative to the ego vehicle). Since
this logical scenario is focused strictly on the detectability of

pedestrian variants, for this example we chose not to include
parameters related to environmental conditions or object oc-
clusion. We have other logical scenarios that address these
concerns directly and that consider some (modest) level of
interaction between pedestrian appearance and environmental
conditions; see Section III, Scenario 2. If further analysis
and testing suggested that object variants and environmental
conditions interacted strongly to challenge the system, further
scenarios could be developed to investigate this interaction.
Table I shows the parameters selected for the pedestrian
variant example scenario. Equivalence classes are used to de-
fine the values for each parameter, the number of equivalence
classes for each parameter is reported in the table (exact
values withheld for confidentiality). There were no scenario-
level constraints. Columns “Sample 17 and “Sample 2” show
example test cases produced with the CACTus method.

D. Step 4) Generate Concrete Scenarios

Given one or more scenario specifications, concrete sce-
narios are generated using a CT test case generation al-
gorithm, such as the one implemented by ACTS [25]. To
run the CT algorithm, each parameter from the scenario is
translated into a test variable that can assume its specified
values (e.g., equivalence classes). Then, relevant cells from the
ODD compatibility matrix (see Step 1) and the scenario-level
constraints (see Step 3) are translated into logical constraints
that prevent the CT algorithm from generating outputs with
invalid parameter combinations. The CT algorithm produces
a set of concrete scenarios (test cases) that can be executed
using the appropriate test infrastructure, such as a simulator.

a) Example - Concrete Pedestrian Variant Scenarios:
Using the ACTS tool with combinatorial strength ¢ = 3, we
generated 7133 concrete scenarios for the pedestrian variant
logical scenario (see parameters in Table I). The number of
generated concrete scenarios for other choices of ¢ are given
in Table II. The two sample columns in Table I contain values
for two concrete scenarios generated by ACTS. Sample 1 is
a child near the front corner of the ego vehicle with dark
skin, brown loosely styled hair wearing a costume with their
arms above their head standing such that their left side is
visible to the ego vehicle. This first sample is quite plausible.
However, in the spirit of challenging the system-under-test,
some more ‘interesting’ samples were also generated. For
instance, Sample 2 is an adult crossing guard with pale skin
wearing a head covering running while hunched over, located
50 meters behind the ego vehicle.

E. Step 5) Assess Coverage

After generating the concrete scenarios, various coverage
reports can be produced. First, since CT algorithms guarantee
a minimum of t-way coverage, the combinatorial strength
of the set of concrete scenarios can be directly reported.
Second, coverage of the ODD can be measured by counting the
occurrence of each element of the ODD in the combined set of
concrete scenarios (across all logical scenarios). This coarse
measure of ODD coverage provides some confidence that all

relevant aspects of the ODD will appear (at minimum of N
times) in the resulting test suite. Other measures of coverage
might include hazard or SOTIF trigger coverage (if such
lists are available) or requirements coverage (if requirements
exist to mitigate specific SOTIF triggers). Gaps in coverage
are permissible provided they are reviewed and justified by
experts familiar with the system and its ODD. If coverage is
acceptable, then the set of generated concrete scenarios can
be used to exercise the system-under-test. Otherwise, earlier
steps should be re-visited.

III. APPLICATION

We have applied CACTus to generate concrete simulation
scenarios aimed at testing the object detection functions (see
summary in Section II) of Motional’s AV, which will serve
as a commercial ‘robotaxi’ to transport passengers in urban
centers. This section summarizes the challenge scenarios we
developed using CACTus, describes our use of NIST’s ACTS
tool to generate concrete scenarios, and recounts some lessons
from the industrial application of CACTus. At this time, we
cannot report the results of executing the generated scenarios.

A. Summary of Logical Scenarios

To date, we have identified a total of eight challenge
scenarios (some containing sub-scenarios). These scenarios
and the size of their parameter spaces are reported in Table
2. The parameter space is described using the notation from
[20] that describes both the number of parameters and the
number of values for each parameter. For example, 42682
corresponds to a scenario where two parameters have four
values, one parameter has six values, and two parameters have
eight values. The size of the parameter space is obtained by
arithmetic (treating superscripts as exponentiation and adjacent
numbers as multiplication); in this case 4-4-6-8-8 = 6144 pos-
sible combinations (disregarding logical constraints between
parameters). The number of constraints provided to ACTS (to
exclude invalid parameter combinations) is also reported.

Scenario 1 is focused on detecting variants of critical objects
such as pedestrians, pedalcycles, and vehicles. The illustrative
example in Section II gives the details of this scenario for
pedestrians (Scenario la) while other sub-scenarios address
pedalcycles (Scenario 1b) and vehicles (Scenario 1c). To
challenge the perception system, we selected a wide range
of object attributes, see Table 1.

Scenario 2 is focused on detecting objects in limited visibil-
ity conditions that impact the performance of one or more of
the vehicle’s sensors. This includes the possibility of heavy
(unexpected) precipitation, fog, dust, and reduced ambient
lighting. Though the goal in this scenario is still to detect
objects of interest, the emphasis is on the interaction between
environmental conditions and attributes of the object, so we
have focused the parameter choices on a sub-set of all possible
object attributes (e.g., pedestrian with dark clothing in reduced
lighting conditions). Scenario 3 is focused on the effect of
reflective surfaces (e.g., a large glass window), which might
contain reflected images of objects. For this scenario, the

relative position of the ego vehicle, other objects of interest,
and the reflective surface are particularly important, so these
were chosen as parameters.

Scenario 4 is intended to challenge the object tracking
capability of the perception system by providing cases where
objects split (e.g., a pedestrian gets out of a vehicle) or merge
(e.g., a pedestrian picks up a child). There are several sub-
scenarios considered that an AV is likely to encounter in
an urban setting. Since the focus is on object tracking, the
parameters for Scenario 4 address object motion and behavior
and not appearance nor environmental conditions.

Scenario 5 considers partially occluded objects of interest,
e.g., a pedestrian standing behind another object such as a
mailbox such that only their shoulders and head are visible
to the ego vehicle. The intent is to determine if the ML
algorithm(s) performing object detection and classification
are sensitive to specific parts of an occluded object; for
example, a vehicle might only be correctly classified if its
wheels are visible. The parameters for Scenario 5 focus on
the geometric relationship between the ego vehicle, the object
of interest, and the occluding object such as the extent of
occlusion and the portion of the occluded object. Scenario 8 is
related and considers the case where a previously unoccluded
object becomes (temporarily) fully occluded. For example, if
a pedestrian walks behind a parked car and then re-emerges.

Scenario 6 considers the case where the perception system
must process a large number of objects near the ego vehicle.
For example, many pedestrians cross the road in front of the
vehicle. This condition might occur during rush hour in a busy
urban center or if there many people suddenly exit a building
(e.g., an emergency in a hotel). Parameters for this scenario
consider the number and type of objects as well as the behavior
of the group (random motion, uniform motion, etc.).

Scenario 7 is related to Scenarios 1 and 2 and considers
the case where an object’s appearance is very similar to its
surroundings such that it is difficult to detect. For example, a
pedestrian wearing grey clothing standing near a concrete wall.
Parameters of interest include the appearance and size of the
object, the relative position of the object, and characteristics
of the object’s surroundings.

B. Concrete Scenario Generation

Using the eight logical scenarios above, we applied step
4 of the CACTus method to generate concrete test scenarios
for various combinatorial strengths up to ¢ = 6. Scenarios
were generated using the ACTS tool (v3.1, using the IPOG
algorithm [26] [27]) on an Asus ZenBook with a 4-core 11th
Gen Intel i7 processor at 2.8 GHz and 16 GB of RAM. Table
2 reports the number of concrete scenarios generated and the
execution time (to generate the scenarios using ACTS) in
seconds. Let k& be the total number of parameters for each
scenario, then the maximum number of tests (if every param-
eter was to be combined with every parameter) is reported in
the column ¢ = k; this allows us to compare the reduction in
number of scenarios afforded by the use of CT for choices of
t. In cases when ACTS did not complete execution, “DNF” is

reported. Additionally, scenarios 4b, 4c, and 5 used only five
parameters each, so values for the case where ¢ = 6 cannot be
generated (denoted “N/A : k = 5”). Figure 3 plots the number
of concrete scenarios generated for selected logical scenarios
(other scenarios had similar plots); this figure shows that the
number of concrete scenarios increases exponentially with the
combinatorial strength (even with constraints).

1E+07
—&—Scenario la
—— Scenario 3
106 Scenario 4c¢
Scenario 8
1E+05 Scenario 1b

e

1E+04

1E+03

Number of Concrete Scenarios

1E+02

1E+01

2 3

4 5 6

Combinatorial strength ¢

Fig. 3. Concrete scenarios for select logical scenarios.

C. Lessons Learned

Next, we report several lessons learned from our experience
applying CACTus to a commercial AV perception system.

a) Use of System Failure Modes: When selecting the
logical scenarios and developing their challenge hypotheses,
we found the system failure modes (as defined in an indepen-
dent analysis) to be a particularly helpful area of engineering
knowledge. More specifically, we examined the failure modes
to find conditions that might be used to challenge the system-
under-test. For example, Scenario 4 is a direct consequence of
a hypothesized failure mode related to object tracking.

b) Challenge Hypothesis and Scenario Scope: While
specifying the relevant parameters for each logical scenario,
we repeatedly revisited the challenge hypothesis to ensure
that the choice of parameters was aligned with our original
intent of the scenario. We undertook scenario specification as
a group activity and found the challenge hypothesis important
for structuring our group discussions. Often one group member
would propose a parameter and the other member would
challenge the relevance of the parameter on the grounds that
it was not aligned with the challenge hypothesis. While the
purpose of the challenge hypothesis (per Section II) is indeed
to structure these discussions, we would like to underscore its
role in our thinking while parameterizing challenge scenarios.

c) Hierarchical Taxonomy Improves Specification: When
specifying parameters, we valued having a structured taxon-
omy of the ODD that decomposed environment conditions and
object types in a hierarchical manner. This meant that we could
specify an entire category of conditions or objects very quickly

(rather than listing each variant on its own). For example,
rather than listing all the variants of passenger cars (sedan,
hatchback, coupe, etc.) we were able to specify the category
‘passenger car’ and use scripts to automatically populate the
inputs to the ACTS tool for scenario generation. There is an
opportunity to create tools (or extensions) that translate ODD
specifications into inputs compatible with existing CT tools.

d) Scenario Decomposition: We initially attempted to
specify Scenario 1 as a single scenario but ran into per-
formance limitations with the ACTS tool while generating
test cases. Our ODD is very detailed, and we believe the
parameter space for Scenario 1 was simply too large for
the tool to process within the time alloted. Instead, we were
able to decompose the scenario into sub-scenarios by object
type. While the runtime was still over three hours, we were
able to generate concrete scenarios that covered our ODD.
For users of CT tooling encountering performance problems,
we recommend decomposing the parameter space along a
boundary that is reasonable given the application area.

e) Choice of Combinatorial Strength: The value of ¢ dic-
tates the strength of the generated test suite. While empirical
results for conventional software show that most defects are
found when ¢ = 6 [20] we are not aware of any similar results
for ML-based or autonomous systems. On one hand, if ¢ is too
small, then an important combinations might be missed. On
the other hand, when ¢ is too big, the size of the test suite
is significant for an industrial scale ODD. During our project,
we performed a literature review to determine common choices
of ¢ for autonomous systems and found that t = 2 to t = 4
has been used by some authors [18], [19], [28]-[31]; however,
there do not appear to be any empirical studies supporting this
choice. Such studies would greatly benefit practitioners who
have to make firm decision about combinatorial strength.

IV. COMPARISON TO EXISTING METHODS

This section reviews related work on CT and scenario-based
testing for autonomous systems and compares the CACTus
method to existing methods and results.

Wotawa et al. describe a notation to define the input space of
a complex system in the form of an ontology and demonstrate
how such an ontology can be used for CT [19]. There attention
is given to AVs, for instance defining both “car” and “truck”
as types of “vehicle”, but the overall content of their paper
is general and theoretical; the actual case study discussed
focused on natural language sentence structure. This work was
continued in [32]. In contrast, the CACTus method combines
an ontology, expert knowledge, and CT to generate challeng-
ing scenarios. Moreover, in this paper we used CACTus to
generate test cases for a commercial AV.

Tao et al. describe an ontology-based CT method to test an
Autonomous Emergency Braking (AEB) system [29]. The sce-
narios were based on standard EuroNCAP scenarios [33], and
the input space was almost entirely geometric in character, i.e.,
distances, speeds, and directions. This work was continued in
[31]. In contrast, the CACTus method uses expert knowledge
(expressed as a challenge hypothesis) to guide the development

of logical scenarios Furthermore, CACTus’ input space is not
limited to geometric parameters and can also include discrete
characteristics of agents in the scene, and the scene itself, such
as weather conditions.

Tuncali et al. present a method to derive and execute test
cases for AVs with ML-based components using a precise
requirements-based framework [18]. Variations on these test
cases were created using CT over parameters like pedestrian
clothing color, vehicle color, and vehicle speeds. These test
cases were executed automatically using their framework to
find conditions that violate system requirements. Simulated
Annealing was then used to generate adversarial test cases
from the initial test results. In contrast, the CACTus method
does not specify system requirements or iteratively generate
adversarial test cases focusing instead on choosing challenging
scenarios through grey-box knowledge of the system-under-
test and choosing comprehensive parameter values.

Huang et al. present a case study applying pairwise (t = 2)
testing to a high-speed rail automatic train protection system
(ATP) [30]. The test scenarios chosen focused on abnormal
inputs to the ATP, with the parameters for each scenario being
enumerations with on the order of 10 possible values per
parameter. This approach successfully identified several faults
in the ATP software. Huang et al.’s approach of choosing
abnormal test inputs is similar to the CACTus method, but
CACTus uses a much larger input space at a higher level of
abstraction (environmental factors rather than system inputs),
which is necessary to manage complexity of the operational
environment of an AV vs. ATP.

Patel et al. present an approach using CT to evaluate ML
models for bias and fairness [34]. Specifically, they examine
an ML model making predictions about individuals financial
or criminal status for bias related to protected characteristics
such as age, race, religion, and gender. Although CACTus
appears very dissimilar to this study, the ODD for our case
study contained detailed characteristics for pedestrians over-
lapping with the protected characteristics identified in [34],
including age, skin color and hair color, clothing, and hair
length. Furthermore, although the ML components of the AV
under study are not making predictions about an individual
human, they are predicting whether a given region of space
corresponds to a human based on sensor data. So, similarly to
the justice system, bias for AVs is problematic.

The AVSC proposes a methodology to evaluate the be-
havioural competency of AVs in the context of their ODD
using thresholds on defined metrics [35]. This approach fo-
cuses on the nominal top-level behavior of the vehicle under
typical conditions, analogously to a human driver’s test. In
contrast, CACTus aims to test vehicle system under unusual
conditions.

In summary, like our CACTus method, several researchers
have applied CT to structured descriptions of ODDs (ontolo-
gies etc.) for autonomous systems. However, the existing ap-
proaches are generally limited in two ways. First, they appear
to combine all available parameters when generating test cases.
When used at industrial scale, these methods will produce

TABLE 11
CHALLENGE SCENARIOS, PARAMETER SPACE, NUMBER OF CONCRETE SCENARIOS GENERATED, AND ACTS RUNTIME; “DNF” INDICATES THE ACTS
TOOL DID NOT FINISH EXECUTION WITHIN THE AVAILABLE TIME; THE t = k COLUMN WAS CALCULATED WITHOUT CONSIDERING CONSTRAINTS.

Scenario Number of Concrete Scenarios (execution time in seconds)
Name Parameter Space Numbelt of t=2 t=3 t=4 t=5 t=206 t==k
Constraints
i "y 1277102031111l 1xl1ploxl 478 7,133 90,405 1,038,739 . 17
la Pedestrian Variant 4°6'7°879°11713715716"25 662 “2) (39.2) (604.5) (13.266.6) DNF 3.1 x 10
. . 1p371gdqlqplmol 823 7,948 73,301 602,685 10
1b Vehicle Variant 3°6°7°8%9°16" 72 2153 8.5) (34.3) (285.1) (3,251.5) DNF 1.9 x 10
. 141260l 020411110lcleal 215 2,812 34,234 372,649 11
lc | Pedalcycle Variant 1141657829411 131151 16 1007 38) (159 (78.1) (2847.1) DNF 1.9 x 10
P s il 1432235192020l 347 3,682 36,719 312,325 12
2 Limited Visibility 374°5%6°7°879°28 183 2.9) (16.1) (163.5) (2555.5) DNF 1.1 x 10
3 | Reflective Surface 213343618292 1 90 (0.8) (62965) (51";327) 3(2’51(3))2 1(2(3)’682)6 1.1 x 108
Object Split or
4a | Merge - Cyclist 1164829t 15 89 (1.3) (72775) (51’5757) 2(225%5 (915é§3()2) 8.3 x 10%
Falls of Bicycle : i : :
Object Split or . .
4b | Merge - Pedestrian | 4'5'6182 0 64 (0.6) (31911) '(’39(2)? 7,680 (9.1) kN/_A'S 7.7 % 10°
Exits Vehicle : = -
Object Split or .)
4c | Merge - Pedestrian | 426182 1 64 (1.1) (‘tlf) 1(’38;)1 3,840 (5.0) ,5"}'5 6.1 x 10°
Picks up Object ’ : -
Object Split or
4d | Merge - Adult 436182 1 64 (1.0) (‘;lg) 1(;‘9('1’)3 (71’2952) 1(;'132()) 2.5 x 10%
Picks Up Child : : : :
Partially Occluded lelgla2 651 3,240 12,960 N/A: 4
5 | Object of Interest | £ ° 89 0 8105 1 (5 52 (14.8) k=5 | 13x10
6 | Many Objects 324251619t 2 55 (1.2) (21855) 1(’322)3 5,083 (8.0) igfg? 3.9 x 10*
Low-Contrast 225110201 404 2,081 8,730 30,781 5
7| Background FHeTe } b oy (6.0) (17.2) 642 | 82x10
Temporarily 1,1.301 393 1,971 7,828 30,781 4
8 | Occluded Object 3747679 2 3 A2 | 39 (3.9) ALy (642 | 23x10
Total 2,489 25,998 255,982 2,334,021 - 3.3 x 1017

extremely large test sets, even when CT is used to contain
the growth. In contrast, CACTus combines expert judgement
with grey-box knowledge of the system to intelligently select
test parameters, resulting in a more focused set of test cases.
Second, to our knowledge, none of the existing approaches
have been applied at a commercial/industrial scale. Existing
approaches use of CT to produce on the order of 100s of
test cases whereas our results show many orders of magnitude
more test cases for a commercial AV’s perception system.

V. DISCUSSION

This paper has introduced the CACTus method for gener-
ating test suites that challenge autonomous systems. The use
of a ’challenge hypothesis’ is an important innovation that
allows expert judgement to guide creation of test scenarios
and reduce the parameter space. The method was applied to
generate test cases for commercial AV’s perception system.
Below we describe an alternative use of CACTus, the methods
limitations, and then make suggestions for future work.

A. Reversing CACTus to Measure Coverage

In this paper CACTus is presented as a ‘forward” method to
generate concrete scenarios, it could also be used in reverse to
measure the functional coverage of an existing set of scenarios.
In our experience, this alternative use case occurs frequently

in industry. The reverse method would, given a set of concrete
scenarios and a specification for one or more corresponding
logical scenarios, produce a measure of combinatorial strength
for each logical scenario. Tools such as ACTS already have
functions that assess combinatorial strength of a given set of
test inputs. This would provide practitioners with a sense of
whether a set of concrete scenarios derived via another process
have adequate coverage of the ODD.

B. Limitations

CACTus is intended to produce challenge scenarios for
the system-under-test, i.e., to find unexpected behaviors or
defects. However, like any engineering method, it has limi-
tations. Specifically, it should not be used as the sole method
to demonstrate that a system is adequate for its intended
purpose. Other verification and validation methods, such as
those recommended by ISO 26262 or ISO 21448 are still
applicable. In particular, though CACTus provides a measure
of ODD coverage and combinatorial strength at the concrete
scenario level, it does not include any notion of coverage at the
logical scenario level. Since logical scenarios are selected to
challenge the system-under-test, it is likely that other scenarios
(which might not appear challenging) are not included.

C. Future Work

Next steps for the CACTus method include applying it to
other systems to demonstrate its applicability and effectiveness
more broadly, both in the area of AVs and other autonomous
systems; determining how to integrate more sophisticated CT
methods, such as mixed strength CT to further reduce the
size of the generated test suite [36]; conducting empirical
studies to determine a suitable combinatorial strength for au-
tonomous system testing; developing tools to support scenario
specification activities that take account of large or complex
operational domains, such as deriving challenge scenarios
from defeater nodes in an EA argument [37]; specifying the
ODD as a formal ontology; executing the generated tests
to determine effectiveness in finding faults when compared
to other test-generation methods, such as random testing or
adaptive random testing [38]; and using insight gained from
test results to improve the underlying system and as evidence
in an argument for the safety of the system.

[1]

[2]
[3]

[4]

[5]

[6]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

ISO/TC 22/SC 32, “ISO/PAS 21448:2019 - Road vehicles - Safety of the
intended functionality,” International Organisation for Standardisation,
2019.

“ANSI/UL 4600 - Standard for Safety for the Evaluation of Autonomous
Vehicles and Other Products,” 2020.

R. Ashmore, R. Calinescu and C. Paterson, “Assuring the Machine
Learning Lifecycle: Desiderata, Methods, and Challenges,” ACM Com-
puting Surveys, vol. 54, no. 5, pp. 111:1-111:39, 2021.

P. Kohli and A. Chadha, “Enabling Pedestrian Safety Using Computer
Vision Techniques: A Case Study of the 2018 Uber Inc. Self-driving Car
Crash,” in Advances in Information and Communication. FICC 2019,
2019.

P. Penmetsa, P. Sceinidashtegol, A. Musaev, E. Kofi Adanu and M. Hud-
nall, “Effects of the autonomous vehicle crashes on public perception
of the technology,” IATSS Research, vol. 45, no. 4, pp. 485-492, 2021.
“ISO 26262 - Road Vehicles - Functional Safety,” International Organ-
isation for Standardization, 2018.

P. Koopman, “How Safe is Safe Enough?: Measuring and Predicting
Autonomous Vehicle Safety,” Independently Published, 2022.

P. Koopman, “The Heavy Tailed Safety Ceiling,” in Automated and
Connected Vehicle Systems Testing Symposium, 2018.

P. Koopman, “Challenges in Autonomous Vehicle Testing and Valida-
tion,” SAE International Journal of Transportation Safety , 2016.

Y. Tian, K. Pei, S. Jana and R. Baishakhi, “DeepTest: automated
testing of deep-neural-network-driven autonomous cars,” in International
Conference on Software Engineering, New York, NY, USA, 2018.

L. Ma, F. Juefel-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen,
T. Su, L. Li, Y. Liu, J. Zhao and Y. Wang, “DeepGauge: multi-
granularity testing criteria for deep learning systems,” in Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE 2018), 2018.

Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill and R. Ashmore,
“Structural Test Coverage Criteria for Deep Neural Networks,” ACM
Transactions on Embedded Computing Systems, vol. 18, no. Ss, pp.
1-23, 2019.

Y. Dong, P. Zhang, J. Wang, S. Liu, J. Sun, J. Hao, X. Wang, J. S. Dong
and D. Ting, “There is Limited Correlation between Coverage and Ro-
bustness for Deep Neural Networks,” arXiv preprint arXiv:1911.05904,
2019.

R. Ashmore and A. Banks, “The Utility of Neural Network Test
Coverage Measures,” in The AAAI’s Workshop on Artificial Intelligence
Safety, 2021.

Z. Li, X. Ma, X. C and C. Cao, “Structural Coverage Criteria for
Neural Networks Could Be Misleading,” in International Conference
on Software Engineering: New Ideas and Emerging Results, 2019.

L. Ma, F. Xue, B. Li, L. Li, Y. Liu and J. Zhao, “DeepCT: Tomographic
Combinatorial Testing for Deep Learning Systems,” in International
Conference on Software Analysis, Evolution and Reengineering, 2019.

[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

L. Ma, F. Zhang, M. Xue, B. Li, Y. Liu, J. Zhao and Y. Wang,
“Combinatorial Testing for Deep Learning Systems,” in arXiv preprint,
2019.

Tuncali, Fainekos, Prokhorov, Ito and Kapinski, “Requirements-driven
Test Generation for Autonomous Vehicles with Machine Learning Com-
ponents,” IEEE Transactions on Intelligent Vehicles, 2019.

F. Wotawa and Y. Li, “From Ontologies to Input Models for Combina-
torial Testing,” IFIP International Conference on Testing Software and
Systems, vol. 11146, pp. 155-170, 2018.

D. Kuhn, R. Kacker, Y. Lei and D. Simos, “Input Space Coverage
Matters,” Computer (IEEE Computer), vol. 53, no. 1, pp. 37-44, 2020.
K. Czarnecki, “Operational World Model Ontology for Automated
Driving Systems - Part 2: Road users, animals, other obstacles and
environmental conditions,” Waterloo Intelligent Systems Engineering
Lab (WISE) Report, University of Waterloo, 2018.

“AVSC Best Practice for Describing an Operational Design Domain:
Conceptual Framework and Lexicon,” Automated Vehicle Safety Con-
sortium, 2020.

“PAS 1883:2020 - Operational Design Domain (ODD) taxonomy for
an automated driving system (ADS) - Specification,” British Standards
Institution, 2020.

K. Czarnecki, “Operational World Model Ontology for Automated
Driving Systems - Part 1: Road Structure,” Waterloo Intelligent Systems
Engineering Lab (WISE) Report, University of Waterloo, 2018.

R. N. Kacker, “ACTS: A Combinatorial Test Generation Tool,” in Pro-
ceedings of Sixth IEEE International Conference on Software Testing,
Verification and Validation ICST 2013, Luxembourg, 2013.

Y. Lei and K. Tai, “In-parameter-order: a test generation strategy
for pairwise testing,” in Proceedings Third IEEE International High-
Assurance Systems Engineering Symposium, 1998.

Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence, “IPOG:
A General Strategy for T-Way Software Testing,” in 14th Annual
IEEE International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS’07), Tucson, AZ, USA, 2007.

D. R. Kuhn, R. N. Kacker and Y. Lei, “Introduction to Combinatorial
Testing”, Chapman and Hall/CRC, 2013.

Tao, Li, Wotawa, Felbinger and Nica, “On the Industrial Application
of Combinatorial Testing for Autonomous Driving Functions,” 2019
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2019.

R. Huang, C. Rao, Y. Lei, J. Guo and Y. Zhang, “Applying Combinatorial
Testing to High-Speed Railway Automatic Train Protection System,”
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2022.

Y. Li, J. Tao and F. Wotawa, “Ontology-based test generation for
automated and autonomous driving functions,” Information and Software
Technology, vol. 117, 2020.

F. Kluck, Y. Li, M. Nica, T. Jianbo and F. Wotawa, “Using Ontologies
for Test Suites Generation for Automated and Autonomous Driving
Functions,” IEEE International Symposium on Software Reliability
Engineering Workshops, 2018.

Euro NCAP, “TEST PROTOCOL - AEB systems,” EUROPEAN NEW
CAR ASSESSMENT PROGRAMME, Brussels, Belgium, 2017.

A. Patel, J. Chandrasekaran, Y. Lei, R. Kacker and D. R. Kuhn, “A Com-
binatorial Approach to Fairness Testing of Machine Learning Models,”
IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2022.

SAE AVSC, “AVSC00008202111 - AVSC Best Practice for Evaluation
of Behavioral Competencies for Automated Driving System Dedicated
Vehicles (ADS-DVs),” 2021.

M. Ozcan, “Applications of Practical Combinatorial Testing Methods
at Siemens Industry Inc., Building Technologies Divison,” in IEEE In-
ternational Conference on Software Testing, Verification and Validation
‘Workshops, 2017.

J. B. Goodenough, C. B. Weinstock and A. Z. Klein, “Eliminative
Argumentation: A Basis for Arguing Confidence in System Properties,”
Carnegie Mellon University - Software Engineering Institute, Pittsburgh,
United States, 2015.

T. Y. Chen, H. Leung and I. K. Mak, “Adaptive Random Testing,”
Advances in Computer Science - ASIAN 2004. Higher-Level Decision
Making, pp. 320-329, 2005.

	Introduction
	Combinatorial Testing
	Overview of Contribution

	The CACTus Method
	Step 1) Define Operational Design Domain (ODD)
	Step 2) Identify Logical Scenario(s)
	Step 3) Parameterize Logical Scenarios
	Step 4) Generate Concrete Scenarios
	Step 5) Assess Coverage

	Application
	Summary of Logical Scenarios
	Concrete Scenario Generation
	Lessons Learned

	Comparison to Existing Methods
	Discussion
	Reversing CACTus to Measure Coverage
	Limitations
	Future Work

	References

